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ABSTRACT 
 

 

 
The basic aim of this work was the theoretical investigation of the mechanisms of 

entrainment and elastoplastic compression/shearing of soft/ductile contamination 

particles in sliding-rolling elastohydrodynamic contacts. In pursuit of this target, two 

models were developed to study the entrainment process of spherical particles in the 

inlet zone of lubricated point contacts (chapter 1) and the mechanism of 

thermomechanical deformation of soft/ductile spherical particles in the inlet and 

central (Hertzian) zone of lubricated line contacts (chapters 2-5). The models were 

materialized through computer simulations to analyze a large number of typical 

applications and to cover a broad range of operating conditions, representative of 

industrial Machine Elements (gears, bearings, etc.). 

 The simulation revealed the risks involved in the presence of soft 

contaminants in concentrated contacts. More specifically, contamination particles 

were related to surface indentation, scuffing/seizure (directly or indirectly), as well as 

thermomechanical wear (local high-heat tempering reactions and even melting). The 

models are aimed to predict clearly the onset of damage due to the presence of one or 

more, mainly soft/ductile and metallic, contamination particles in concentrated 

contacts and to predict the critical values of operational parameters like the slide/roll 

ratio, film thickness, thermomechanical properties of the materials involved, etc., 

which would produce an unsafe working environment, in the presence of specific 

solid contaminants. The assessment of the risk of damage was both short-term 

(surface indentation, abrasion and scuffing caused by lubricant starvation due to inlet 

blockage by debris) and long-term (fine pitting and residual stresses due to the plastic 

indentation of debris, which would extent to gross damage, or small thermo-cracks 

caused by the frictional heating of debris, which could later propagate under the 

action of high solid or lubricant pressures). Results are verified by comparison with 

experimental findings from the literature and new hypotheses (like the four last 

conclusions of chapter 5), are put forward to explain some reported failures or to 

point experimentalists to specific areas of future research. 
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1 xA x-coordinate of point A (figure 1.3). 

1 xB x-coordinate of point B (figure 1.3). 

1 xC x-coordinate of the centre of the particle C (figure 1.3). 

1 x0 x-coordinate of the initial position of a particle in the reference 

volume. 

1 yA y-coordinate of point A (figure 1.3). 

1 yB y-coordinate of point B (figure 1.3). 

1 yC y-coordinate of the centre of the particle C (figure 1.3). 

1 y0 y-coordinate of the initial position of the particle in the 

reference volume. 

1 z1 z-coordinate of the lower surface of the (elastically deformed) 

ball (equation (1.72)). 

1 z2 z-coordinate of the surface of the (elastically deformed) flat 

(equation (1.73)). 

1 α See equations (1.97) and (1.98). 

1 β See equations (1.97) and (1.99). 

1 γ See equations (1.97) and (1.100). 

1 ∆x, ∆y, ∆z Spatial steps for the solution of the Navier-Stokes equations. 

1 η Dynamic viscosity of the fluid. 
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1 λ Constant (see equations (1.101), (1.103) and (1.104)). 

1 µ1 Friction coefficient between the particle and the ball. 

1 µ2 Friction coefficient between the particle and the flat. 

1 ν Kinematic viscosity of the lubricant at environmental 

conditions. 

1 ν1 Poisson ratio of the material of the ball. 

1 ν2 Poisson ratio of the material of the flat. 

1 ρ Density of the fluid. 

1 υ Sum of surface displacements (appearing in equation (1.61)). 

1 ϕ Angle of the tangent to the ball’s wall (figure 1.1). 

1 ϕ1, ϕ4 Angles (equations (1.75)-(1.78)). 

1 ω Rotational speed (spin) of the (spherical) particle. 

   

2 A Facial surface of the deformed particle (disk) (equation (2.26)). 

2 b Hertzian contact semi-width (figure 2.1 and equation (2.2)). 

2 c0 Constant (equation (2.42)). 

2 CD Fluid drag coefficient on the particle (equation (2.28)). 

2 dFstat Elemental fluid force on a sector of the deformed particle due 

to the elastohydrodynamic fluid pressure (figure 2.6 and 

equation (2.21)). 

2 dFstat,x x-component of the elemental force dFstat (equation (2.22)). 

2 D Diameter of the undeformed particle. 

2 E Effective modulus of elasticity (equation (2.4)). 

2 E1, E2 Moduli of elasticity (surface 1 or 2). 

2 Fdyn Fluid force on the particle, owing to the action of the dynamic 

fluid pressure on the particle (equations (2.25), (2.29)). 

2 Ffluid Overall fluid force on the particle (figure 2.7 and equation 

(2.39)). 

2 Fstat Fluid force on the particle, owing to the elastohydrodynamic-

fluid-pressure gradient (equation (2.23)). 
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2 h Elastohydrodynamic film thickness (figure 2.1 and equation 

(2.1)). 

2 hc Elastohydrodynamic central film thickness (figure 2.1). 

2 kp Yield stress in simple shear of the material of the particle. 

2 m Mass of the particle. 

2 
~

2
~

1  , NN  Solid normal forces on the particle (figure 2.2). 

2 p Elastohydrodynamic pressure of the lubricant. 

2 ps Solid pressure between the particle and the counterfaces. 

2 R Radius of the deformed (disk-shaped) particle. 

2 Req Effective radius of curvature of the contact (equation (2.3)). 

2 Rs Radius of the stick region between the particle and a 

counterface (appears in equation (2.32)). 

2 R1, R2 Radii of curvature (surface 1 or 2). 

2 Rep Particle Reynolds number; Reynolds number of the local fluid 

flow around the particle (equation (2.27)). 

2 S0 Viscosity-temperature coefficient (appears in equation (2.30)). 

2 t Time elapsed since the particle was first pinched. 

2 
~
2

~
1  ,TT  Solid frictional forces on the particle (figure 2.2). 

2 u1, u2 Tangential speeds of the counterfaces (figure 2.1). 

2 U Macro-speed of the lubricant relatively to the particle (see 

equations (2.25) and (2.27)). 

2 Vextr Extrusion speed of the particle (speed of the lateral expansion 

of the particle during its plastic compression). 

2 
~

1pV  Velocity of the particle relatively to surface 1 (opposite to 
~
p1V  

shown in figure 2.7). 

2 
~

2pV  Velocity of the particle relatively to surface 2 (figure 2.7; see 

also equation (2.45)). 

2 
~
1pV  Velocity of surface 1 relatively to the particle (figure 2.7; see 

also equation (2.46)). 

2 V12 Sliding speed of the contact (V12 = u1 – u2). 
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2 
~
2pV  Velocity of surface 2 relatively to the particle (opposite to 

~
2pV  

shown in figure 2.7). 

2 Vσ Volume of the particle. 

2 w Load per unit length of the contact. 

2 x Distance of the centre of particle’s disk from the centre of the 

contact (x = 0) (equations (2.40), (2.43)). 

2 X' Instantaneous displacement of particle’s geometrical centre 

(centre of the particle disk) relatively to surface 2 (figure 2.7 

and equation (2.44)). 

2 Yp Yield stress in uniaxial tension of the material of the particle. 

2 Z1 Viscosity-pressure coefficient (appearing in equation (2.30)). 

2 a1, a2 Angles (figure 2.2 and equations (2.11) or (2.16) and (2.17)). 

2 ∆t Time step. 

2 ε “Flow perturbation” parameter (see explanations below 

equation (2.23)). 

2 η Dynamic viscosity of the lubricant. 

2 η0 Dynamic viscosity of the lubricant at environmental conditions. 

2 θ Temperature of the lubricant. 

2 θ0 Environmental temperature. 

2 µf Friction coefficient between a particle and a counterface. 

2 µ1, µ2 Coefficients of kinetic (sliding) friction between the particle 

and a counterface (counterface 1 or 2). 

2 ν1, ν2 Poisson ratios (surface 1 or 2). 

2 ρ Density of the lubricant. 

2 ρp Density of the material of the particle. 

2 ϕ1, ϕ2 Angles (see figure 2.7 and equation (2.35)). 

   

3 a22 Heat partition coefficient, giving the proportion of the emitted 

heat of a sector that goes to counterface 2 (equations (3.29) – 

(3.31)). 
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3 A Lateral wet area of a peripheral sector (equations (3.36)). 

3 c Specific heat. 

3 cfluid Specific heat of the lubricant. 

3 g The gravitational acceleration (g ≅ 9.81 m/s2). 

3 Gr Grashof number. 

3 GrL Surface-length Grashof number (equation (3.45)). 

3 h Lubricant film thickness. 

3 hL Surface-length heat convection coefficient. 

3 kp Yield stress in simple shear of the material of the particle. 

3 K Equivalent thermal conductivity (equation (3.8)). 

3 Kfluid Thermal conductivity of the lubricant. 

3 Kp Thermal conductivity of the material of the particle. 

3 Kx, Ky, Kz Principal thermal conductivities (direction x, y or z). 

3 K1, K2 Thermal conductivities of the counterfaces (counterface 1 or 2). 

3 L Integration reference length (equation (3.39)). 

3 Ns Number of sectors on a track (equation (3.18)). 

3 Nt Number of tracks on the particle. 

3 NuL Surface-length Nusselt number (equation (3.41)). 

3 p Pressure between the particle and the counterfaces. 

3 Pr Prandtl number (equation (3.44)). 

3 q Heat produced due to friction between a sector of the particle 

and a counterface (equation (3.3)). 

3 qcool Heat emitted from a surface rectangle (of area S) of a 

counterface. 

3 qe Heat of a sector that is transferred back to the counterfaces 

during a time step ∆t (equation (3.27)). 

3 qp Frictional heat of a sector due to the internal shearing of the 

particle, owing to the particle’s plastic compression (equation 

(3.21)). 

3 qp,conv Heat convected from a peripheral sector of the particle to the 

lubricant during a time step ∆t (equation (3.35)). 
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3 qp,conv,total Total heat lost along particle’s periphery during a time step ∆t 

(equation (3.49)). 

3 qp,total Heat temporarily stored to a particle during a time step ∆t 

(equation (3.26)). 

3 qp,1, qp,2 Frictional heat generated at the interface of the particle and 

counterface 1 or 2. 

3 Q “Strength” of a heat source (see equation (3.5)). 

3 r Distance of a sector from the centre of the particle. 

3 R Radius of the deformed (disk-shaped) particle (equation (2.20)). 

3 RaL Surface-length Rayleigh number (equation (3.48)). 

3 Re Reynolds number. 

3 ReL Surface-length Reynolds number (equation (3.42)). 

3 S Area of an elemental surface rectangle of a counterface. 

3 S  Integration area (see equations (3.52) and (3.53)). 

3 t Time. 

3 t' Time (t' < t). 

3 U Local speed of the fluid relatively to a sector (equation (3.43)). 

3 V Resultant speed of a sector of the particle relatively to a 

counterface (equation (3.2)). 

3 Vslid Sliding-speed component of a sector relatively to a counterface, 

due to the sliding motion of the particle as a rigid body (figure 

3.1). 

3 Vx, Vy x and y-components of the speed of a sector of the particle 

relatively to a counterface (equations (3.1)). 

3 V12 Relative sliding speed of the counterfaces. 

3 x  Distance (see equations (3.15)). 

3 xinit Lower x-limit of the grid for the calculation of the convective 

heat losses (see equation (3.53)). 

3 xfin Upper x-limit of the grid for the calculation of the convective 

heat losses (see equation (3.53)). 
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3 xp The distance of the centre of the particle from the centre of the 

contact (given by x in equation (2.40)). 

3 xV x-displacement of a point of the medium from time t' to time t 

(see equations (3.14)). 

3 X Transformed spatial variable (see equations (3.7)). 

3 yfin Upper y-limit of the grid for the calculation of the convective 

heat losses (see equation (3.53)). 

3 yV y-displacement of a point of the medium from time t' to time t 

(see equations (3.14)). 

3 Y Transformed spatial variable (see equations (3.7)). 

3 Z Transformed spatial variable (see equations (3.7)). 

3 α Heat partition coefficient. 

3 α1, α2 Heat partition coefficients, giving the proportion of heat that 

goes to counterface 1 or 2. 

3 β Parameter (equations (3.46) and (3.47)). 

3 βp Parameter (equation (3.22)). 

3 β12 Parameter (equation (3.32)). 

3 δ Parameter (equation (3.28)). 

3 ∆ϑ Angular integration step (equation (3.17)). 

3 ∆r Spatial integration step (equation (3.16)). 

3 ∆t Time step. 

3 η Local dynamic viscosity of the lubricant (see equation (2.30)). 

3 ϑ Angle (figure 3.1). 

3 θ Temperature (see equation (3.4)) or 

local skin temperature of a counterface, excluding heat 

convection from the counterface to the lubricant. 

3 θfluid Reference temperature of the fluid next to a particular 

peripheral sector of the particle. 

3 θp Temperature of a peripheral sector of the particle (equation 

(3.37)). 

3 θ0 Initial temperature. 
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3 θ1, θ2 Local skin temperatures (counterface 1 or 2). 

3 λ Thermal diffusivity (see equation (3.4)). 

3 λp Thermal diffusivity of the material of the particle. 

3 λx, λy, λz Principal thermal diffusivities (direction x, y or z) (equation 

(3.11)). 

3 λz,1 Principal thermal diffusivity of the material of counterface 1 in 

the z-direction. 

3 µ Coefficient of friction between the particle and a counterface. 

3 µint Friction coefficient between two internal layers of the 

plastically deforming particle (see equation (3.20)). 

3 ρ Material density. 

3 ρfluid Local density of the lubricant (see equation (2.31)). 

   

4 b Hertzian contact semi-width. 

4 ( )zyxc ,,  Integration function (see equations (4.63), (4.64)). 

4 c1, c2 Substitution variables (equations (4.73)). 

4 E Modulus of elasticity. 

4 F1 Substitution variable (equation (4.10)). 

4 G Shear modulus. 

4 G1 Substitution variable (equation (4.11)). 

4 H1 Substitution variable (equation (4.12)). 

4 L Lamé constant (equation (4.69)). 

4 m Substitution variable (equation (4.78)). 

4 n Substitution variable (equation (4.79)). 

4 N Total number of surface nodes. 

4 Nold Number of “old” nodes (see figure 4.3). 

4 p Solid pressure. 

4 qx, qy Surface tractions (direction x or y). 

4 R Radius of the deformed (disk-shaped) particle (see equation 

(2.20)). 

4 t Time. 
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4 T Temperature increment above the bulk temperature (flash 

temperature). 

4 u Elastic displacement in the x-direction. 

4 ux, uy, uz Elastic displacements (direction x, y or z). 

4 w Elastic displacement in the z-direction. 

4 W Load per unit length of the line contact of the counterfaces. 

4 xp Distance of the centre of the particle from the centre of the 

Hertzian zone of the line contact of the counterfaces. 

4 Y Yield stress in uniaxial tension or compression. 

4 α Coefficient of linear thermal expansion. 

4 γ Elastic shear strain. 

4 ∆x, ∆y, ∆z Spatial steps. 

4 ε Elastic normal strain. 

4 εx, εy, εz Elastic normal strains (direction x, y or z). 

4 η Integration variable. 

4 λ Thermal diffusivity. 

4 ν Poisson ratio. 

4 ξ Integration variable. 

4 ρ Substitution variable (equation (4.14)). 

4 ρm Material density. 

4 σmechanical Mechanical normal stress. 

4 σoverall Overall normal stress (= mechanical + thermal). 

4 σthermal Thermal normal stress. 

4 σx, σy, σz Elastic normal stresses (direction x, y or z). 

4 (Hertz)
xσ , (Hertz)

zσ  Normal stresses (direction x or z), caused by a Hertzian loading 

in a non-conformal line contact (equations (4.75), (4.76)). 

4 ( )ψσ thermal,z  Surface normal thermal stress in the z-direction, “produced” by 

the method of the “thermoelastic displacement potential”. 

4 τmechanical Mechanical shear stress. 

4 τoverall Overall shear stress (= mechanical + thermal). 
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4 τthermal Thermal shear stress. 

4 τx, τy, τz Elastic shear stresses (direction x, y or z). 

4 (Hertz)
zxτ  Shear stress, caused by a Hertzian loading in a non-conformal 

line contact (equation (4.77)). 

4 ( )ψτ thermal,zx  Surface shear thermal stress, “produced” by the method of the 

“thermoelastic displacement potential”. 

4 ( )ψτ thermal,zy  Surface shear thermal stress, “produced” by the method of the 

“thermoelastic displacement potential”. 

4 υ Elastic displacement in the y-direction. 

4 υe Speed of dilatational waves in a solid. 

4 υθ Speed of motion of the temperature field. 

4 ψ “Thermoelastic displacement potential”. 

4 Ω Substitution variable (equation (4.13)). 

   

5 b Hertzian contact semi-width (equation (2.2) and figure 2.1). 

5 D Diameter of the undeformed spherical particle. 

5 Dcritical Critical diameter of an undeformed spherical particle in order to 

cause surface damage. 

5 Fdyn Fluid force on the particle, owing to the action of the dynamic 

fluid pressure on the particle (equations (2.25), (2.29)). 

5 Ffluid Overall fluid force on the particle (figure 2.7 and equation 

(2.39)). 

5 Fstat Fluid force on the particle, owing to the elastohydrodynamic-

fluid-pressure gradient (equation (2.23)). 

5 h Elastohydrodynamic film thickness. 

5 hc Central film thickness (figure 2.1). 

5 H Height of a sector (equation (5.6)). 

5 m Mass of the particle. 

5 Ny Number of sectors along the radius of the particle on the y-axis. 

5 p Solid pressure on the particle (figure 5.2). 

5 pEHL Elastohydrodynamic pressure (figure 5.1). 
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5 pold Pressure p calculated two steps previously in the convergence 

iteration scheme (see equation (5.22)). 

5 pprevious Pressure p calculated one step previously in the convergence 

iteration scheme (see equation (5.22)). 

5 R Radius of the deformed (disk shaped) particle during its 

deformation (figure 5.5, equations (5.24) and (2.20)). 

5 Rmax Maximum radius of the disk-shaped (deformed) particle, which 

appears when the particle is in the Hertzian zone of the contact 

(equation (5.26)). 

5 R1, R2 Radii of curvature of the counterfaces 1 and 2. 

5 t Time elapsed since the particle gets trapped. 

5 T1, T2 Flash temperatures on counterfaces 1 and 2. 

5 u Surface elastic displacement in the x-direction. 

5 u1, u2 Tangential speeds of the counterfaces (figure 2.1). 

5 Vextr Extrusion speed of the particle (equation (2.52), figure 5.12). 

5 Vp1, Vp2 Speeds of a particle relatively to surfaces 1 and 2 (see figure 

5.12, equations (2.45) and (2.46). See also section 2.7). 

5 Vs The sliding speed of the contact. 

5 Vy Magnitude of the y-component of the velocity vector of a sector 

relatively to the counterfaces (see equations (5.1)). 

5 Vσ Volume of the undeformed particle (see equation (5.23)). 

5 V1, V2 Resultant speeds of a sector relatively to counterfaces 1 and 2 

(equations (5.2)). 

5 V1,x, V2,x Magnitudes of the x-components of the velocity vectors of a 

sector relatively to counterfaces 1 or 2 (equations (5.1)). 

5 w Surface elastic displacement in the z-direction. 

5 21  ,ww  Surface normal displacements of counterfaces 1 and 2 (equation 

(5.7)). 

5 , mechanical,1w  

mechanical,2w  

Mechanical parts of 21  ,ww . 
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5 
normal,2normal,1  , ww  Parts of ( ) ( )suppress

2
suppress

1  , ww , owing to normal loads (equations 

(5.9)). 

5 , tangential,1w  

tangential,2w  

Parts of ( ) ( )suppress
2

suppress
1  , ww , owing to tangential loads (equations 

(5.10)). 

5 thermal2thermal1  , ,, ww  Thermal parts of 21  ,ww  (equations (5.11)). 

5 ( ) ( )suppress
2

suppress
1  , ww

 
Surface normal displacements of counterfaces 1 and 2 due to 

the action of a suppressive surface loading 

( ) ( ) ( )ψψψ ττσ thermal,thermal,thermal, ,, zyzxz −−−  (equations (5.8)). 

5 ( ) ( )ψψ
21  ,ww  Surface normal displacements due to the application of the 

method of the “thermoelastic displacement potential”. 

5 x Distance of the centre of the particle disk from the centre of the 

contact (x = 0) (equations (2.40) and (2.43)). 

5 xt=0 Distance x at time t = 0 (point where the particle is first 

pinched). 

5 xinit Length (see equations (5.25) and figure 5.6). 

5 ( )0t
fin
=x  Length (see equations (5.25) and figure 5.6). 

5 ( )0t
init
=x  Length (see equations (5.25) and figure 5.6). 

5 yfin y-limit of a grid (see equations (5.25)). 

5 yinit y-limit of a grid (see equations (5.25)). 

5 Yp Yield stress in uniaxial compression of particle’s material. 

5 zfin z-limit of a grid (see equations (5.25)). 

5 zinit z-limit of a grid (see equations (5.25)). 

5 Z1 Viscosity-pressure coefficient of the lubricant (see equation 

(2.30)). 

5 δ Under-relaxation factor (see equation (5.22)). 

5 ∆s Length of the edge of the (square) base of a sector (equation 

(5.16)). 

5 ∆x, ∆y, ∆z Spatial steps for the thermomechanical stress calculations in 

directions x, y and z. 
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5 ϑ Angle between axis x and the vector of the extrusion velocity 

(figure 3.1). 

5 θ Temperature. 

5 θ0 Bulk (initial, environmental) temperature. 

5 µ Average friction coefficient (equation 5.20)). 

5 µ1, µ2 Coefficients of dynamic (sliding) friction between the particle 

and counterfaces 1 and 2. 

5 τ1, τ2 Surface tractions (figure 5.2). 

5 ( )ψσ thermal,z  Surface normal thermal stress in the z-direction, “produced” by 

the method of the “thermoelastic displacement potential”. 

5 ( )ψτ thermal,zx  Surface shear thermal stress, “produced” by the method of the 

“thermoelastic displacement potential”. 

5 ( )ψτ thermal,zy  Surface shear thermal stress, “produced” by the method of the 

“thermoelastic displacement potential”. 

5 υ Surface elastic displacement in the y-direction. 

5 ϕ1, ϕ2 Angles (equations (5.3)). 
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INTRODUCTION 

 

 

 
From the outset of this research, the author was well aware of the risks involved 

when solid contaminants were allowed to be present in the lubrication zone of 

modern, high-performance Machine Elements. Numerous studies and industrial 

reports were already published, which showed that solid contaminants were 

responsible for a large proportion of reported failures and that lubricant cleanliness is 

a key factor in the long-term unproblematic operation of gears and bearings. What 

was not very clear and required further investigation was the mechanisms in which 

the contaminants are acting in their destructive work and where lies the limit between 

safe and unsafe operation of a contaminated contact. 

 Obviously, the previous questions are vital in understanding and predicting 

which environments are prone to failure and to undertake preventative measures, 

which will minimize the risk, without maximizing the operational cost. For example, 

typical filters in the bearing industry block particles usually not less than 10 µm, not 

because filters of 3 µm are not available, but because the finer the filter is, the higher 

is the running cost (fine filters clog more often, need regular attention, result in 

higher lubricant-pressure drops, etc.). Under this perspective, the effect of debris 

particles on the life of Machine Elements is, like all problems in Mechanical 

Engineering, a problem that has to be solved with a compromise between machine 

reliability and operational cost. 

 Leonardo da Vinci was probably among the first to report on the effects of 

debris particles in contacts, as early as in the 15th century. However, since the 

industrial revolution of the 19th century and until a few decades ago, the effects of 

dirt and dust in the operation of machine elements like gears and bearings was not 

given primary attention because: 

(a) there were other primary sources of concern, like the cleanliness and 

homogeneity of steels, and 

(b) the average lubrication film thickness and machine tolerances in typical industrial 

applications were substantially higher than these of today
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 With the evolution of high-speed/load components, the average lubricant film 

was gradually reduced to even sub-micron levels, and this brought in the foreground 

the influence of even the smallest particles wandering around in a lubrication 

environment. Bearing companies were particularly affected by the action of 

contamination particles because of the tolerances and speed, load and reliability 

demands associated with bearings. Since bearings are the most widely used Machine 

Elements, it is clear that whatever reduces their performance is a cause of major 

concern. 

 Debris particles are known to be responsible for increased wear. This wear 

has either one of the following forms. 

(1) Abrasion. This wear-mode is associated with scratching/grooving of hard 

particles on usually softer surfaces, in contacts that involve sliding (as in gears). 

It can also appear in rolling contacts with low slide/roll ratios (as in rolling 

bearings). This is the most widely acknowledged debris-related wear mode and 

there are numerous publications dealing with the theoretical simulation and 

experimental study of this field (Rabinowicz and Mutis (1965), Larsen-Badse 

(1968a, 1968b), Richardson (1968), Chandrasekaran et al. (1985), Xuan et al. 

(1989), Williams and Hyncica (1992), Dwyer-Joyce et al. (1994) – these are just 

a few selected papers). 

(2) Indentation. Debris dents are among the most commonly observed defects on 

bearing surfaces. Usually associated with the existence of hard particles, dents 

are areas where plastic flow has occurred, and thus, are “surrounded” by residual 

stresses (Ko and Ioannides (1989), Xu et al. (1997)). The mechanisms of debris 

indentations are a favorite subject in the literature, in both analytical and 

experimental studies (Hamer et al. (1987), Sayles and Ioannides (1988), Hamer 

et al. (1989b), Sayles et al. (1990), Hamer and Hutchinson (1992), Dwyer-Joyce 

(1993), Sayles (1995), Ville and Nelias (1997, 1998), Hamilton et al. (1998)). 

This popularity is sparkled by a serious cause: dents (especially those that have 

raised sharp shoulders, produced by hard particles) are directly related with 

surface fatigue in both dry contacts (Sayles, 1995) and elastohydrodynamic 

contacts (Venner and Lubrecht, 1994). The highly stressed areas around dents are 

precursors of cracks and result in rolling fatigue, significantly reducing the life of 

Machine Elements (Sayles and Ioannides, 1988). When sharp-edged dents are 

repeatedly over-rolled, cyclic edge stresses at their shoulders may lead to spalling 
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fatigue and even scuffing (Tallian, 1992). However, even smooth dents (caused 

by soft/ductile particles) are dangerous in elastohydrodynamic contacts because 

of the sudden loss of lubricant pressure (and corresponding film thinning or 

collapse) when these dents (or cavities) are over-rolled. Webster et al. (1986) 

showed analytically that stress peaks during the over-rolling of dents could be as 

much as three times greater than the subsurface stress maximum, resulting from a 

corresponding ideal Hertzian loading, and reported a 7-fold reduction in the 

fatigue life of rolling bearings tested under 40 µm filtration as compared with the 

fatigue life expected when a 3 µm filtration is used, the difference being 

attributed to the surface indentations. 

(3)  Gross (macro) scuffing. In recent years, it has been recognized that solid 

particles can obstruct the lubrication of contacts by accumulating in the inlet zone 

and preventing the lubricant replenishment of the contact (Wan and Spikes, 1986 

and 1988). This led to a new postulate for the initiation of scuffing (Enthoven and 

Spikes, 1995), based on the fluid starvation and film collapse in elastohydro-

dynamic contacts, caused by wear-particle accumulation in the inlet zone. 

(4) Local (micro) scuffing. Another perspective was put forward by Chandrasekaran 

et al. (1985) during scuffing tests in four-ball machines (sliding contact). They 

observed that the contamination of oil promoted scuffing. They postulated that a 

possible cause for this is the desorption of the lubricant when the contact 

temperature exceeds a certain limit, the temperature rise being caused by the 

frictional heating of the contaminants in the contact (because the particles were 

embedding one surface and were shearing on the other surface). Later, Khonsari 

and Wang (1990) were probably the first to present a theoretical analysis to study 

the frictional heating caused by a single hard particle when sliding on a surface, 

and proposed that this could explain some of the scuffing failures. A recent study 

follows on the same steps (Khonsari et al., 1999). 

(5) Spalling. This is a rather limited and unknown debris-related failure mechanism. 

When soft/ductile particles are compressed, they reduce to sharp platelets, which 

are harder than the matrix particles due to plastic strain hardening. Due to this 

increased hardness, such platelets are prone to cause surface damage in sliding 

contacts where they shear and remove surface material. Moreover, in rolling 

elliptical contacts, such platelets can cause spalling (removal of surface material) 
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due to their spinning inside the contact, owing to the Heathcote differential slip 

effect (Chao et al., 1996). 

 

 The sources of debris in Machine Element environments are numerous. They 

can be both external and internal. 

(a) External sources of debris. 

The air and the lubricant are the most common bearers of foreign particles. When 

sealing is poor or has failed, debris (like for example dust) may intrude through 

any suitable opening (broken seals, labyrinth gaps, etc.).  

(b) Internal sources of debris. 

Sources of debris that are internal to machines involve worn surfaces (bearings, 

gears, seals) that lose fragments during operation, lubricant-born debris (deposits 

like soot and sludge during poor combustion in internal-combustion engines, 

grease thickeners, etc.), as well as components that were poorly cleaned before 

assembly (as for example, the gears or the shell in a gearbox). 

 

 Although a significant amount of research has been devoted the last decade in 

understanding the mechanisms of debris particle damage in concentrated contacts 

(Wan and Spikes (1986, 1988), Sayles and Ioannides (1988), Hamer et al. (1987, 

1989a, 1989b), Dwyer-Joyce et al. (1992, 1994), Dwyer-Joyce (1993), Sayles 

(1995), Enthoven and Spikes (1995), Dwyer-Joyce and Heymer (1996), Hamilton et 

al. (1998), etc.), most studies are experimental and confined to particular cases, with 

simplifications that limit the general applicability of their results. Such 

simplifications are used to bypass the significant complexity of the general problem. 

A satisfactory global theoretical treatment is connected with complicated 

mathematics and requires the simultaneous use of tools from apparently different 

theories and sciences: Theory of Elasticity, Theory of Plasticity, Theory of 

Thermoelasticity, Theory of Elastohydrodynamic Lubrication (EHL), Contact 

Mechanics and even Chemistry. For a reader who will study this Thesis carefully, the 

previous statement will soon become clear. Moreover, existing models and studies 

are mainly confined to hard particles and rolling contacts, whereas soft/ductile 

contaminants and mixed rolling-sliding contacts remain a rather neglected part in the 

literature, especially by the non-existence of theoretical models. 
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 It is this gap that the present theoretical study attempts to fill. With two 

theoretical models to cover the behaviour and effects from (mainly soft/ductile) 

particles in rolling-sliding, lubricated contacts, the study has reached some very 

important conclusions, which confirm existing experimental findings and, 

additionally, suggest new/suspected mechanisms of the behaviour of particles in 

concentrated contacts. Such important conclusions involve the following: 

(1) Soft debris particles are sometimes even more destructive than equally sized hard 

particles. The reason is due to a thermomechanical wear mode predicted by the 

models of the Thesis and associated mainly with ductile particles. 

(2) Particles are clearly shown to often accumulate in the inlet zone of lubricated 

contacts and cause lubricant starvation, film collapse and even scuffing. 

(3) Soft particles are shown to cause frictional heating in contacts that involve 

sliding. The frictional heating can sometimes be so severe that the local 

temperature increase in the contact may exceed 2,000 °C! Surface melting and 

local scuffing due to the presence of soft/ductile particles in lubricated contacts is 

a new/strengthened theory that emerged from this study. 

Other significant conclusions are listed at the end of each of chapters 1-5 and, 

collectively (main and brief conclusions only) in chapter 6. 

 Despite the amount of analytical work spent in this study, it is still only one 

step forward on a difficult and challenging path. The author kindly welcomes any 

suggestions for improvements and would be happy to contribute in further research 

on this field. 
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CHAPTER 1 
 

ENTRAINMENT OF SOLID PARTICLES IN 

ELASTOHYDRODYNAMIC POINT CONTACTS 

 

 

 

1.1 Introduction 
 

It is well known that contamination particles in lubricating oils directly affect the 

operation and life expectancy of machine elements such as bearings, gears, cams and 

followers, etc. Experimental studies have shown that there is often a dramatic 

increase in surface wear when solid particles, even soft ones, interfere between two 

cooperating surfaces as, for example, between two gear teeth. A partial solution to 

this problem is the use of improved sealing techniques. However, this usually results 

in complicated design and increased running costs. A fine filter can collect most of 

the harmful particles but may become clogged and needs additional attention and 

more frequent replacement than a less fine filter. On the other hand, microscopic 

filtration results in fluid pressure-drop and energy losses. In practice, many hydraulic 

systems have bypass valves to avoid interruption of lubricant supply when a filter 

becomes severely clogged. This means that contamination particles may be given the 

chance to bypass the filters and enter the lubrication zone. 

 There are, however, two important issues, which must be taken into account. 

(a) There are particles, which, under specific operating conditions of a lubricated 

contact, may not cause damage. The severity of possible damage depends on the 

ratio of the particles’ hardness over the counterface hardness, the ratio of the 

particles’ size over the central film thickness, the sliding and rolling velocity of 

the contact, the mechanical and thermal properties of the particles and the 

surfaces, etc.
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(b) Some operational parameters of a contact, like the slide/roll ratio or the oil bath 

thickness, play a major role in the likelihood of particle entrapment. This has 

been shown experimentally in, for example, Wan and Spikes (1988), and Dwyer-

Joyce and Heymer (1996). In this chapter, it is shown theoretically, too. A careful 

selection of these parameters, following the guidelines and results of the present 

work, may reduce (by design) the likelihood of particle entrapment, without the 

necessity to introduce improved filtering. 

 This chapter is devoted to the development of a theoretical model to simulate 

the entrainment process of small, spherical, solid particles in an EHD contact of a 

ball, sliding-rolling on a flat surface. Assuming a random distribution of particles in 

front of the moving ball, a 3-dimensional fluid flow analysis reveals the paths that 

particles are expected to follow and, as a result, the probability that a particle will 

end on the ball (collide with the ball) or bypass it. In the case of a particle ending on 

the ball, a mechanical force analysis can show if the particle is likely to be entrapped 

and pass under the ball, or get expelled from the contact. The case of a particle being 

entrapped is associated with surface damage due to denting or scratching/grooving. 

Finally, the case of a particle being expelled (possibly many times) is associated with 

fluid starvation due to particle accumulation in the inlet zone of the contact, which, if 

persistent, may result in scuffing. 

 The motion of particles in viscous fluids at low Reynolds number has 

attracted much attention in the past due to its significance in physical science and the 

chemical industry. There are studies dated as early as the analysis of Stokes in 1851, 

concentrating on the translation of rigid spheres through unbounded quiescent flows 

at very low Reynolds number. Extended theoretical analyses can be found in Jeffery 

(1922), Rubinow and Keller (1961), Bretherton (1962), Safman (1965), Leal (1979, 

1980 - together with extensive bibliographic research), Brunn (1976a, 1976b, 1977), 

Drew (1978), and Sugihara-Seki (1993). The previous studies are all very 

complicated and concentrate mainly on the Fluid Mechanics aspects of the problem. 

The studies involve Newtonian and non-Newtonian (viscoelastic) fluids, one or more 

particles (mainly simulated by rigid spheres), and even account for the interactions 

among the particles due to fluid flow disturbances as well as electric forces (Saville, 

1977). Recent studies, which are more tribology-oriented, can be found in Dai and 

Khonsari (1993), Dwyer-Joyce and Heymer (1996), and Kumar et al. (1997).
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 The present work is a much simplified one because it assumes that the fluid 

containing a contamination particle is undisturbed by the presence of the particle. 

However, this is not unrealistic if the following are taken into account: 

• In the simulation, there is always only a single particle in the flow. Interactions 

with other particles are, hence, absent. 

• The particle is quite small (size in the order of 1-50 µm). Pressure differences 

upstream and downstream of the particle are very low. 

• The particle Reynolds number of the flow is very low (at the order of 10-3 up to 

1). The local flow is creeping and micro-vortices are absent. 

• The particle is considered spherical and rigid. 

• The flow is essentially under constant environmental pressure. 

 In view of the previous considerations, the mathematical problem is 

satisfactorily well posed. It is noted that the intention of the present study is to 

concentrate on easily conceivable results, which can be put into practice with 

minimal effort and confusion. For this reason, it is intended that the results of this 

study (within the frames of mathematical completeness) be used by the practitioner 

rather than the mathematician. 

 

 

 

 

1.2 Mathematical model 
 

1.2.1 Solution of the fluid flow problem 
 

The model involves a ball moving on a flat surface. The ball has a rolling velocity as 

well as a sliding velocity relative to the stationary surface. A view of the assembly 

can be seen in figure 1.1. The fluid flow in the oil bath is treated as 3-dimensional, 

despite the relatively thin film thickness hin, which can be as low as a few microns 

for starved contacts. The following assumptions are made. 

(1) The elastohydrodynamic pressure distribution is substituted by the well-known 

Hertzian pressure distribution for a point contact. As a matter of fact, it is known 

in the literature (see, for example, Hamrock, 1994) that the fluid pressure 

distribution is very close to that predicted by Hertz for a dry contact, the only 
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deviation being at the end of the Hertzian zone, where the elastohydrodynamic 

pressure spike exists (a nice figure is shown in Lin and Chu, 1991 (figure 4)). 

The latter is not a problem here because the last half of the Hertzian zone is not 

included in the study. Therefore, a Hertzian pressure distribution can be used as a 

good approximation. 

 

 

 

                                                                                            
 
 
                                                                         
  
                                   
                                                                                                                 
  
 
  
 
 
 

Figure 1.1 Configuration of the model; ball, flat surface and oil bath. 
 

 

(2) The particles are assumed spherical. Although many shapes can be considered, 

the sphere is the simplest one and is the best starting point for the analysis.  

(3) Particles which have a mean diameter D smaller than the central film thickness hc 

of the contact (figure 1.1) are not of concern in this study. Therefore, only 

particles with D > hc are studied here. This means that particles cannot enter 

“deep” inside the inlet zone of the contact without being compressed. Thus, for 

the area of application of the present simulation, particles travel in an 

environment (oil bath) where the fluid static pressure is equal to the 

environmental pressure (as opposed to the elastohydrodynamic pressure, which is 

much higher). 

(4) The fluid flow is assumed unchanged in time. The study involves one particle at a 

time, so that the fluid flow is minimally disturbed by particle’s presence. 
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 In the area of study (inlet zone), the fluid pressure, according to the 

assumption (3) above, is constant. The same is true for the temperature. 

Consequently, lubricant’s viscosity and density in the inlet zone are both constant, 

since these two properties are functions of the pressure and temperature. The flow in 

this area is actually similar to a channel flow and, hence, is treated as incompressible. 

 Gathering all assumptions made previously, the flow is treated as 3-

dimensional, steady state, viscous and incompressible. The Navier-Stokes equations 

for this type of problem are as follows. 
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where ν is the kinematic viscosity of the lubricant at environmental conditions. The 

systems of coordinates xyz and fluid velocity components 
~
u , 

~
v  and 

~
w  are shown in 

figure 1.1. Equations (1.1)-(1.3) are discretized through a second order, finite 

difference scheme. The solution domain is shown in figure 1.2. The dimensions of 

the reference fluid volume are: L ≥ 10·RH  and  S ≥ 2·RH, where RH is the radius of 

the Hertzian contact circle. The lower boundary of the reference volume is the flat, 

whereas the upper boundary is the free surface of the lubricant and the wall of the 

ball. Thus, the reference volume has a thickness that varies from hc to hin. The grid in 

figure 1.2 is constructed of nodes, which are equidistant in both the x and y-direction. 

Thus, spatial steps ∆x and ∆y are constant. Step ∆z along the z-axis varies depending 

on the (x,y) position, as is explained later. 
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Figure 1.2 Reference volume and grid. 

 

 

 After discretization, equations (1.1)-(1.3) are written as follows: 
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Boundary conditions 

On the flat and the ball’s wall, the lubricant can neither penetrate nor slip. These 

constraints are translated into the following equations: 

 

( )[ ] ( ) skk VuyjR
R

u
uu −−⋅∆⋅−−⋅=≅
== a

2 2a
12 cos1 ϕ                                           (1.7) 

 

011 ==
== ii wv                                                                                                           (1.8) 

 

0===
=== NkNkNk wvu                                                                                            (1.9) 

 

where: 

ua is the rolling velocity of the ball (position y = 0), 

R is the radius of the ball, 

∆y is the spatial step in the y-direction, 

Vs is the sliding velocity of the ball relatively to the flat, 

ϕ is the angle of the tangent to the ball’s wall (figure 1.1), 

N is the number of the k-nodes along axis z (k = N is for the node on the flat). 

 

 The coordinate systems shown in figure 1.2 have their common origin located 

at position (i,j,k) = (3,1,1), which is on the boundary of the Hertzian contact circle. 

The symmetry of the flow about plane y = 0 is taken into account and the solution 

domain is the y < 0 half-space (figure 1.2). Speeds u, v and w in the two half-spaces 

y < 0 and y > 0 are as follows: 

 

00 >< = yy uu      ,     00 >< −= yy vv      ,     00 >< = yy ww                                                 (1.10) 
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 In order to proceed with the solution, the following substitutions are made: 
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 Using substitutions (1.11)-(1.26), the system of equations (1.4)-(1.6) is 

transformed as follows: 

 

( ) ( ) ( ) 1321 333a eudCuwcCuvbCuu +⋅=+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅          (1.27) 

 

( ) ( ) ( ) 2654 333a evdCvwcCvvbCvu +⋅=+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅                         (1.28) 

 

( ) ( ) ( ) 3987 333a ewdcwwcCwvbCwu +⋅=+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅          (1.29) 

 

The Jacobian determinant of the previous system of equations (1.27)-(1.29) is: 
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where 

 

( ) ( ) dCuwcvbu −+⋅⋅+⋅+⋅+⋅⋅≡ 11 3aa3a                                                       (1.31) 

 

( )22 3a Cub +⋅⋅≡                                                                                                  (1.32) 

 

( )33 3a Cuc +⋅⋅≡                           (1.33) 
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( )44 3aa Cv +⋅⋅≡                                                                                                  (1.34) 

 

( ) ( ) dCvbwcvbu −+⋅⋅+⋅+⋅+⋅⋅≡ 55 3a3a                                                      (1.35) 

 

( )66 3a Cvc +⋅⋅≡                                                                                                  (1.36) 

 

( )77 3aa Cw+⋅⋅≡                                                                                                 (1.37) 

 

( )88 3a Cwb +⋅⋅≡                                                                                                 (1.38) 

 

( ) ( ) dCwcwcvbu −+⋅⋅+⋅+⋅+⋅⋅≡ 99 3a3a                                                     (1.39) 

 

Equations (1.27)-(1.29) form a non-linear system, which is solved here by the 

Newton-Raphson method. The method is expressed by the following iterative 

equation: 
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and the adjoint matrix *J  is 
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whereas 

 

869511 aaaa ⋅−⋅=J                                                                                               (1.44) 

 

928321 aaaa ⋅−⋅=J                                                                                               (1.45) 

 

536231 aaaa ⋅−⋅=J                                         (1.46) 

 

947612 aaaa ⋅−⋅=J                                       (1.47) 

 

739122 aaaa ⋅−⋅=J                                      (1.48) 

 

614332 aaaa ⋅−⋅=J                                                                                               (1.49) 

 

758413 aaaa ⋅−⋅=J                                                                                               (1.50) 

 

817223 aaaa ⋅−⋅=J                                                                                               (1.51) 

 

425133 aaaa ⋅−⋅=J                                                                                               (1.52) 

 

 Because of the high non-linearity of the system, the version of the Newton-

Raphson method used here is a globally convergent one, with line search and 

backtracking to guarantee the convergence of the algorithm regardless of the initial 

guess (Press et al., 1992, section 9.7). Moreover, the results for speeds u and v are 

checked and, if necessary, corrected, using the boundary conditions and especially 

their accurately known values at planes i = 1 and j = 1. 

 Particle trajectories, as is shown later, are calculated using only the 
~
u  and 

~
v  

velocity components. The results for the 
~
w  component are not used further in the 

analysis. Therefore, although the solution obtained for the flow field is 3-

dimensional, particle trajectories are calculated on the xy-plane (figure 1.1), using 
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speeds u and v averaged along axis z, as if the problem were 2-dimensional. The 

omission of the 
~
w  velocity component is done for two reasons: 

(a) to simplify calculations, and 

(b) because the thickness of the reference volume (z-direction) is much smaller than 

the other two principal dimensions. 

 

The accuracy of the calculations can be improved by checking the continuity of flow 

and applying appropriate corrections to intermediate results. This means that after 

solving the system of equations (1.4)-(1.6) in the whole grid, a check at the equation 

of mass conservation 
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and proper re-adjustment of the results must be done, followed by a new solution of 

the equations until convergence is achieved. 

 

 

 

 

1.2.2 Initial position and motion of a particle 
 

Particles are treated as spheres throughout this study. Because of their smallness, 

their real shape is not crucial when considering fluid forces on them. It is definitely 

more important to think of their actual shape when they are pinched between the ball 

and the flat, but this is the subject of section 1.2.3. 

 The distribution of particles at time t = 0 when the study of the history of 

each particle starts, is generally random. Although the mass concentration of 

particles in the inlet of the contact may be more-or-less known, the number of 

particles in the reference volume (figure 1.2) may vary significantly, especially when 

considering possible turbulence and other transient phenomena. For example, it is 

well known that, in a set of spur gears, lubricant is trapped between two engaging 

teeth, resulting in a strong and noisy jet of fluid passing through the gap of the 
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closing teeth with, sometimes, sonic or supersonic speeds. It is rather obvious that 

this affects the concentration of particles in the fluid in a rather unpredictable way. 

 The analysis following in the next pages does not account for possible 

interactions among neighboring particles. These interactions could be of the 

following origin. 

(a) Particle collisions. 

(b) Electromagnetic and adhesion forces when particles come very close, or touch 

each other.  

This simplification is not a great disadvantage of the analysis because of the 

following reasons. 

(a) Even one isolated particle gives plenty of information regarding what is expected 

to happen in the contact when more particles are considered simultaneously. 

(b) A single particle, if large enough, is possible to initiate a cumulative process 

which leads to fluid starvation by, for example, remaining in the inlet zone for 

long enough time as to allow other particles to accumulate and obstruct the flow 

of the lubricant. 

 

 In the next step of the present analysis, a single particle is put at a randomly 

chosen position in the lower half of the reference volume (figure 1.2). Coordinates x0 

and y0 of the initial position of the particle are defined by the following equations: 

 

( ) aaH0 1 rranrNRx x +⋅−⋅=                                                                                  (1.54) 

 

1H0 ranNRy y ⋅⋅=                                                                                                 (1.55)  

 

The radius RH of the Hertzian contact circle (figure 1.2) is: 

 

3

1

H 2

3 



⋅
⋅⋅=
E

RP
R                                                                                                    (1.56) 

 

where P is the load on the ball, R is the radius of the ball, and E is the effective 

modulus of elasticity 
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where E1, E2 and ν1, ν2 are the moduli of elasticity and the Poisson ratios of the 

materials of the ball and the flat respectively. 

“ran1” is a random number between 0 and 1. In order to obtain such a 

number, Press et al., 1992 (p. 271) propose a random number generator, which is 

used in the present study. 

Nx and Ny are integer numbers, given by the following equations: 

 

HR

L
Nx ≡                                                                                                                (1.58) 

 

HR

S
N y ≡                                                                                                                (1.59) 

 

where L and S are the length and semi-width of the reference volume, as is shown in 

figure 1.2. 

 Finally, ra is the radius of the imaginary circle where the particle comes in 

contact with both the ball and the flat. This is the smallest distance from the nominal 

point of contact (centre of the Hertzian circle), where the particle is still undeformed; 

it can be calculated with very good approximation from the following equation: 

 

( ) Drh =a                                                                                                                (1.60) 

 

where D is the particle’s diameter and h is the fluid film thickness 

 

)0()(11
2

c υυ −+








−−⋅+= r
R

r
Rhh                                                            (1.61) 

 

where r is the distance from the centre of the Hertzian contact circle (nominal point 

of “contact”) 
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22 yxr +=                                                                                                         (1.62) 

 

and υ(r) is the sum of the surface displacements of the ball and the flat (due to the 

elastohydrodynamic pressure) at a distance r from the nominal point of contact. 

Equation (1.60) “says” that at the distance ra from the centre of the Hertzian 

contact circle, where the particle is in contact with both the ball and the flat, the 

distance between the ball’s wall and the flat is equal to the diameter of the particle. 

This is so because the deformed surfaces of the ball and the flat near the Hertzian 

contact circle are nearly parallel, according to the simplified EHL theory. 

 The central film thickness appearing in equation (1.61) can be calculated by 

any known semi-empirical formula for point contacts, as the following: 

 

067.053.067.0
c 9.1 −

⋅⋅⋅⋅= WGURh                                                                             (1.63) 

 

where U, G and W are the usual speed, material and load dimensionless parameters 

respectively, found in modern literature (see for example Hamrock, 1994, page 437). 

 Spatial steps ∆x and ∆y, which define the distance of two neighboring nodes 

in the x and y-direction respectively (figure 1.2), are constant, as already mentioned. 

Step ∆z along the z-axis is variable and is defined by the following equation: 

 

{ }
1

,min
ˆ in

−
=∆

zI

hh
z                                                                                                     (1.64) 

 

where hin is the oil bath thickness (figure 1.1), Iz is the fixed number of k-nodes along 

the z-axis, and h is taken from equation (1.61). A variable step ∆z is used in order to 

reduce the number of k-nodes (nodes along the z-axis) and, therefore, the overall 

number of grid nodes and the computer CPU (Central Processing Unit) time needed 

to obtain a solution, without significant loss of accuracy. 

 Particle motion is studied in two dimensions, namely in x and y. Weight and 

(fluid) lift, which are forces along the z-axis, are neglected. As has already been 

explained, this is done primarily because the thickness of the reference volume is 

very small compared with its other two dimensions, and secondly, because particle’s 

vertical motion is not of great concern in this study. Conclusively, only inertia and 
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fluid drag forces are taken into account. If the particle reaches the critical zone r = ra, 

then solid frictional forces between the particle and the surrounding surfaces are 

taken into account as well, and this is studied in section 1.2.3. 

 From the force equilibrium on the particle along the x-axis, the following 

equation is derived: 

 

xmDuCD &&⋅=⋅⋅⋅⋅⋅
22

ave 42

1 πρ                                                                               (1.65) 

 

where ρ is the density of the fluid. Similarly, in direction y: 

 

ymDvCD &&⋅=⋅⋅⋅⋅⋅
22

ave 42

1 πρ                                                                               (1.66) 

 

The left side of equations (1.65) and (1.66) is the fluid force component on the 

particle. This is the fluid drag, which pushes the particle to follow the streamlines of 

the flow. It is thus implied that the motion of the particle is solely due to the Stokes 

drag force applied to it from the fluid. 

 In the present analysis, there is nothing to prevent the particle from having a 

rotational speed as it translates in the fluid. It has actually been shown that a spinning 

spherical particle experiences a transverse force, known as “lift” force, which is 

perpendicular to the drag force (see for example Rubinow and Keller (1961), and 

Saffman (1965)). However, the previous researchers have shown that this lift force is 

usually very small compared to the drag force for creeping flows – usually more than 

one order of magnitude lower (Saffman (1965) – page 394, Drew (1978) – page 

399). Such a force accounts for the curving of a pitched baseball or golf ball 

(Rubinow and Keller, 1961). In order to quantify the effect of this transverse force in 

the present analysis, the author followed Rubinow and Keller (1961 – page 454). 

According to their paper, the ratio of the drag forge over the “lift” force under 

consideration is 

 

ωρ
η
⋅⋅

⋅
≅ 2

6

force Lift""

force Drag

D
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where η is the dynamic viscosity of the fluid, D is particle’s diameter, ρ is the 

density of the fluid, and ω is the rotational speed of the particle. Using the results of 

the present study, as these are presented in section 1.3 later and in table 1.1, it is 

found that, in order for the lift force to be of the same order of magnitude as the drag 

force, the particle must have a rotational speed (spin) of the order of 67·106 rpm! 

Even if the spinning speed of the particle is around 106 rpm, the lift force is 67 times 

lower than the drag force. Since such a high rotational speed is unrealistic in our 

case, it is inferred that the transverse (lift) force on the particle is infinitesimal and, 

therefore, can be omitted in the calculations. (Trying to check a “worse” case 

scenario, the author calculated a lift force that is 875 times lower than the drag force, 

but it must be noted that even this example could not be encountered in reality.) 

 Proceeding with the analysis, the fluid drag coefficient CD is a function of the 

particle Reynolds number Rep of the flow. Due to the smallness of the particle, it is 

assumed that the flow is creeping (Rep < 1). For a sphere in creeping flow, the fluid 

drag coefficient is (see Munson et al. (1990), Table 9.4, page 611): 

 

pRe

24
≅DC                                                                                                               (1.67) 

 

where 

 

ν

UD ⋅
≡pRe                                                                                                           (1.68) 

 

where U is the speed of the fluid relatively to the sphere (particle). The validity of 

equation (1.67) is actually checked at each node in the reference volume of the flow. 

It is indeed found that, for a typical case, Rep < 1, as is shown in the detailed 

examples in section 1.3. Therefore, the use of equation (1.67) is fully justified. 

 Using classical second order, central, finite, time differences, equations (1.65) 

and (1.66) are discretized as follows: 
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                                     (1.69) 
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aveρπ

                                                        (1.70) 

 

where Rex and Rey are the corresponding Reynolds numbers using the fluid velocity 

component in the x and y-direction respectively, and sgn(x) is the sign function of 

variable x: 

 




<
>+≡

0   if     1-

0 if     1
)sgn(

x

x
x                                                                                         (1.71) 

 

uave and vave are averaged values of the u and v-speeds in the x and y-direction 

respectively, along a length equal to the particle’s diameter D. For example, if 

D ≅ 4·∆x, then uave is the arithmetic mean value of the u-speeds at five nodes in the 

neighborhood of the particle. 

If uave = 0, then of course xt+∆t = xt. Similarly, if vave = 0, then yt+∆t = yt. In 

reality, the previous two conditions are never (mathematically) met and can be 

considered as mathematical simplifications. 

 

 

 

 

1.2.3 Modelling the way a particle is entrapped or expelled 
 

Regarding the simple question “Is a particle to be entrapped or expelled from the 

contact?”, the answer does not come easily. This is because the shape of the particle 

as well as the exact shape of the elastically deformed surfaces (including surface 

roughness) is not accurately known. Moreover, the friction coefficient between the 

particle and each surrounding surface in the contact is not precisely known and can 

vary significantly, not only by choosing a different lubrication regime as a basis for 

the study, but also within the frame of a specific lubrication regime. One may argue 

that the solid friction coefficient between a particle and a lubricated surface at light 

loads can be considered approximately equal to that for boundary lubrication 

(roughly around 0.1 - see for example figure 1.8 in Hamrock, 1994). For hard 
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particles with irregular shapes, it is more difficult to evaluate a representative value 

of the friction coefficient than in the case of particles with smooth appearance. 

 Thankfully, the results of this study (presented in section 1.3) suggest that the 

value of the solid friction coefficient used in the calculations is not as critical as it 

seems to be. The reason for this may be the fact that the friction coefficient for the 

contact of the particle and the ball, and the one for the contact of the particle and the 

flat, are considered to be close to each other, which is a realistic assumption. Larger 

discrepancies are expected when the latter is not met. The computer program written 

for this study can easily evaluate the effect of the operational parameters of the 

problem, friction coefficients included. 

 In the next step of the analysis, the following two assumptions are made. 

(1) Particles are considered spherical. Although it is understood that many particle 

shapes exist in reality, there must be a starting point in the analysis and an 

equivalent spherical particle is not an unrealistic assumption. 

(2) The unperturbed elastohydrodynamic pressure distribution between the ball and 

the flat is the one predicted by the Hertzian theory for dry point contacts. EHL 

theory has shown repeatedly with good approximation  (see for example 

Hamrock, 1994, chapter 22, and Venner, 1991, chapter 9) that this is indeed the 

case, at least in the inlet and first-half of the Hertzian zone, including the second 

trailing half of the Hertzian zone if the contact is heavily loaded (which results in 

a decreased pressure spike). Since the reference volume and grid in this study 

(figure 1.2) cover the inlet zone and the first half of the Hertzian zone, 

assumption (2) is fully justified. 

 

 In figure 1.3, a particle is shown in touch with both the ball and the flat, in the 

y < 0 half-space. Figure 1.3 shows the particle at the critical distance ra, in the inlet 

zone of the contact. Frictional forces 
~
1T and 

~
2T  are on the plane where the sliding-

velocity vector of the contact is lying (plane xz). On the other side, frictional forces 

~
3T  and 

~
4T  lie on plane yz, which is perpendicular to the direction of the sliding 

velocity of the contact. The latter forces arise due to the compression of the particle 

and the curvature of the distorted surfaces on plane yz. Normal forces 
~

1N  and 
~

2N  

are due to the reaction of the particle to its compression between the ball and the flat. 
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The coordinate system shown in figure 1.3 has its origin O located at point (0,0,0), 

which is the centre of the Hertzian contact circle, on the wall of the distorted ball. 

 

 

 

A ↔ (xA,yA,zA), B ↔ (xB,yB,zB), C ↔ (xC,yC,zC), O ↔ (0,0,0) 

 

Figure 1.3 Solid frictional forces (
~
1T and 

~
2T  on plane xz, 

~
3T  and 

~
4T  on plane yz) 

  and normal forces (
~

1N  and 
~

2N ) on the particle. 

 

 

 From the geometry of the contact and after a lot of algebraic manipulation, 

the distorted surface profiles of the ball (z1) and the flat (z2) outside circle r = ra, due 

to the Hertzian pressure field, are described by the following equations: 
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where pH is the maximum Hertzian pressure: 
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 The following angles are now defined: 

 

( ) 











∂
∂=


∠=

== AA ,

1

~
11 arctan,ˆ

yyxxx

z
OxTϕ                                                             (1.75) 

 

( ) 











∂
∂=


∠=

== BB ,

2

~
22 arctan,ˆ

yyxxx

z
OxTϕ                                                           (1.76) 

 

( ) 











∂
∂=


∠=

== AA ,

1

~
33 arctan,ˆ

yyxx
y

z
OyTϕ                                                            (1.77) 

 

( ) 











∂
∂=


∠=

== BB ,

2

~
44 arctan,ˆ

yyxx
y

z
OyTϕ                                                           (1.78) 

 

where the partial derivatives in equations (1.75)-(1.78) are given by the following 

equations: 
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Solid frictional forces can be calculated by the following equations: 

 

1131 NTT ⋅== µ                                                                                                     (1.81) 

 

2242 NTT ⋅== µ                                                                                                    (1.82) 

 

where µ1 and µ2 are the friction coefficients for surface 1 (ball) and 2 (flat), 

respectively. The friction between the particle and the surrounding surfaces is 

expected to be of the sliding type (or “dynamic” friction) along direction Ox and of 

the sticking type (or “static” friction) along direction Oy, for the critical time the 

particle stays at distance r = ra away from the Hertzian circle centre. The notion of 

static friction (instead of the usual dynamic friction) has no particular importance 

here as far as the end results are concerned, because, as it is known, a static-friction 

coefficient and the corresponding dynamic-friction coefficient have magnitudes very 

close to each other. Moreover, it is assumed that there is no significant difference in 

surface roughness along Ox and Oy, which would otherwise infer slightly different 

friction coefficients. Such effects are of secondary importance in the study and, as is 

shown in section 1.3, are of limited value since slight variations of the friction 

coefficients do not yield significantly different results. Therefore, only two solid-

friction coefficients are used in the calculations instead of four. 

 Normal forces 
~

1N  and 
~

2N  are calculated as follows: 
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where 
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The norms appearing in equations (1.83) and (1.84) are calculated from the following 

equation: 
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From the force equilibrium in axis x, it is derived that 

 

( ) ( ) 0coscos xfluid,x,2x,12211 =+++⋅+⋅− FNNTT ϕϕ                                             (1.87) 

 

and similarly for axis y 

 

( ) ( )[ ] 0coscos)sgn( yfluid,y,2y,14433 =+++⋅+⋅⋅− FNNTTy ϕϕ                                (1.88) 

 

where N1,x, N2,x, N1,y, N2,y, are the magnitudes of the components of vectors 
~
N  in 

axes x and y, given by the following general equation: 
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Ffluid,x and Ffluid,y are the components of the fluid force on the particle in axes x and y, 

respectively. Using equations (1.67) and (1.68), it is found that 
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where η is the dynamic (or absolute) viscosity of the fluid. 

 It must be noted that the force equilibrium in the z-axis is obviously 

guaranteed by the combined force equilibrium in axes x and y. It must also be noted 

that the direction of vector 
~
2T  is opposite to the direction of vector 

~
1T  (as shown in 

figure 1.3) because what is mainly of concern in this analysis is what will happen just 

after the particle is dragged towards the Hertzian zone. The latter is a critical stage 

because it results in either the entrapment of the particle or a (possibly temporary) 

rejection from the contact. 

 From the linear system of equations (1.87) and (1.88), forces N1 and N2 are 

calculated as follows: 
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where the determinants are given by the following equations: 
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 If both N1 and N2 are calculated to have positive values, the particle is to be 

squeezed and its “thickness” reduced. Following this, the deformed (thinner) particle 

will be able to enter deeper in the EHD gap. This is an indication of entrapment and 

this observation is more realistic for particles softer than the counterfaces (ball and 

flat). In the case of particles harder than the counterfaces, surface denting will result 

in a similar effect. In the latter case, it should also be taken into account the fact that 

the ball has a rolling velocity, which helps it to overcome the obstacle (particle). If 

either N1 or N2 is calculated to have a negative value, the particle will be expelled 

from the contact, because the only possible kind of interaction between the particle 

and one of the counterfaces is repulsion and not attraction, provided that the 

possibility of some degree of adhesion is ignored. These thoughts lead to the 

following assumption: 

 

 

 

 It is necessary at this point to mention that the above assumption gives only 

an indication of entrapment. The assumption uses the word “pinched” instead of 

“entrapped” because final and irreversible entrapment cannot be absolutely ensured 

by checking the force equilibrium on the particle only at the position it is first 

pinched. This is shown in the analysis of chapter 2, where the force equilibrium on 

the particle is checked during the motion of the particle inside the elastohydro-

dynamic gap. On the other hand, the trajectory of a trapped particle inside an 

elastohydrodynamic gap is almost entirely governed by the frictional forces on it (see 

chapter 2). However, in the case of elliptical contacts or contacts with variable local 

Assumption: 
If (calculated) N1 > 0 and N2 > 0 
then the particle will be pinched (and possibly trapped),
otherwise it will be expelled from the contact. 
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sliding, the length of the trajectory of a particle depends mainly on the local sliding 

(or tangential) speeds of the counterfaces. In the case of a cylinder sliding on one 

direction on a flat surface, a trapped particle may have to travel all the way along a 

straight line from the point it is pinched to the outlet zone of the contact, where it is 

finally rejected (as is shown in chapter 2). In the case of a sphere sliding and 

spinning on a flat surface, a trapped particle may have to travel a very short distance 

along a curved trajectory before being rejected. The previous two examples indicate 

that the severity and duration of particle entrapment depends largely on the geometry 

and kinematic conditions of a contact. The author has compiled a computer program 

to study this interesting issue, which, in elliptical contacts, is associated with spalling 

due to the (known as) Heathcote differential slip effect (see for information in Chao 

et al., 1996). 

 The analysis of the present section is completed with the method of 

calculation of the coordinates xA, yA, xB, yB of points A and B (figure 1.3). The 

equations of line ε that comes through points A(xA,yA,zA) and C(xC,yC,zC) are as 

follows: 
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∴ε                                                                       (1.96) 

 

The equations of line ε´ that comes through point A(xA,yA,zA) and is parallel to vector 

( )γβα ,,
~

1 =N  are as follows: 
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=
−

=
−

∴                                                                            (1.97) 

 

where (using equations (1.83) and (1.85)) 
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whereas it has been assumed, without loss of generality, that N1 = 1. Lines ε and ε´ 
must be identical: 

 

( )0 ,    and    and    ́ ACACAC ≠⋅=−⋅=−⋅=−⇔≡ λγλβλαλεε zzyyxx     (1.101) 

 

where λ is a constant to be determined. Point A(xA,yA,zA) belongs to the particle, 

which is a sphere with diameter D and centre C(xC,yC,zC). Therefore, the coordinates 

of point A must satisfy the equation of the sphere: 

 

( ) ( ) ( )
4

2
2

CA
2

CA
2

CA

D
zzyyxx =−+−+−                                                         (1.102) 

 

Using equations (1.101), the previous equation (1.102) gives: 

 

2222 γβα
λ

++⋅
±= D

                                                                                     (1.103) 

 

From equation (1.100), it is easily seen that γ > 0. Also, zC > zA. Therefore, using the 

last of equations (1.101), it is derived that λ > 0. Moreover, it is easily proven that 

1222 =++ γβα . Conclusively, equation (1.103) gives finally: 

 

2

D
=λ                                                                                                                  (1.104) 
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Using the first two of equations (1.101) (those inside the parentheses), as well as 

equations (1.79), (1.98) and (1.99), the following equation is derived: 

 

A
C

C
A x

x

y
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Finally, the following system results: 
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                                                                                              (1.106) 

 

where α is a function of xA and yA, and coordinates xC and yC as well as diameter D 

are known quantities. The system of equations (1.106) is non-linear and is solved by 

a trial-and-error method, which comprises the following steps: 

(1) xA is given a trial value in the range (xC – δ , xC + δ), where δ is an appropriately 

chosen constant (it is expected from the geometry of the problem that xA must 

have a value very close to that for xC). 

(2) yA is calculated from the first of equations (1.106). 

(3) The following quantity is calculated: α⋅−−=
2AC

D
xxerror . 

(4) Steps (1)-(3) above are repeated to cover the whole range xC – δ < xA < xC + δ . 
(5) Final values of xA and yA are those which give the minimum error, as defined in 

step (3). 

 

 Following the above procedure, xB and yB are also calculated. Thus, points A 

and B are located. This is followed by a force calculation on the particle, according 

to the analysis presented previously, in order to check if the particle is pinched or 

expelled. There are two possibilities: 

(a) The particle is expelled. In this case, the particle’s new position is set to be close 

to its last position, such that a
2
C

2
C ryx ≥+  (in other words, the particle is left 

just outside the critical circle where it comes into contact with both the ball and 
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the flat). Following this, the particle continues its voyage in the fluid, and the 

whole analysis is repeated. This part of the study is very crucial, because, if 

particles are expelled relatively many times, they may start accumulating in the 

inlet zone of the contact, with a tendency to cause fluid starvation and, possibly, 

result in scuffing. 

(b) The particle is pinched. In this case, the story of the particular particle ends. If 

there are other particles or, more precisely, different initial positions to be 

studied, then the analysis of this chapter is repeated for them as well. 

 

 The analysis presented thus far is outlined in the flowchart of figure 1.4. 
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       START 
 

 
 

              Input: number of grid nodes in x, y, z, 
       material mechanical properties, load, 
   lubricant properties, rolling velocity of 

                                                   the ball, slide/roll ratio, hin, particle 
                                                diameter, friction coefficients. 

 
 

         Calculate hc, b, and boundaries 
of the reference volume. 

 
 

        Calculate all surface elastic deformations, 
                                                     assuming Hertz loading. 

 
 

                                                     Solve the 3-d, steady state, viscous, 
       incompressible Navier-Stokes equations 
     in the reference volume. Check validity 
     of the solution and correct if necessary. 

 
 
 

        Put a particle at a random position 
                                                           in the reference volume. 

 
 

         Calculate fluid drag forces on the 
     particle and find its trajectory. 

 
                          Yes 

 
                                             Yes 
           Other particles                           Does the particle escape from 
                 to study?                                     the reference volume? 

 
                            No 
                                                                                        No 
                    STOP 
                                                                                                                       No 

     Is the particle in contact 
with the ball? 

 
                                                                                        Yes 

 
       Local force equilibrium analysis 

       (including solid frictional forces). 
 

                                                                                        
 

              Particle expelled. Put it “very”      
     Yes   Is the particle          No    close to its last position so that 
                                                                             entrapped?                     it does not touch the ball. 
 

 

Figure 1.4     Flowchart of the model of particle entrainment in a point EHD contact.
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1.3 Examples 
 

The mathematical analysis outlined in section 1.2 has been transferred into computer 

code. A brief description of the computer program is presented in section 1.5. In the 

present section, a variety of results is presented through detailed diagrams, which 

show the effects of the slide/roll ratio, the oil-bath thickness and the size of the 

contamination particles on the lubrication of an elastohydrodynamic point contact of 

a ball sliding-rolling on a flat surface. The aims of this section, and of the present 

chapter in general, are as follows. 

(a) Study of the likelihood of oil starvation, caused by the accumulation of 

contamination particles in the inlet zone of the elastohydrodynamic contact. In 

the cases where oil starvation is more likely, scuffing may follow shortly after the 

conditions for oil starvation are met. 

(b) Study of the likelihood of surface damage (denting or scratching/grooving). This 

is equivalent to the study of the likelihood for a particle to become entrapped and 

be squashed in the elastohydrodynamic gap. 

 The values of the parameters held constant throughout this investigation are 

shown in table 1.1. 

 

Table 1.1 

Values of the parameters held constant in the example 

Ball radius R = 4 mm 

Modulus of elasticity E1 = E2 = 200 GPa 

Poisson ratio ν1 = ν2 = 0.3 

Ball’s load 50 N 

Dynamic viscosity of the lubricant η = 0.1 Pa·s 

Pressure-viscosity coefficient of the lubricant 2·10-8 m2/N 

Density of the lubricant ρ = 870 kg/m3 

Rolling velocity of the ball ua =  1 m/s 

Material density of a particle 7000 kg/m3 

Solid-friction coefficient µ1 = µ2 = 0.1 

Number of initial positions of a particle in the reference volume 100 

Number of grid nodes (i,j,k) 400×100×10 
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The slide/roll ratio Sr is defined as the ratio of the sliding velocity of the ball 

relatively to the stationary flat, over the ball’s rolling velocity: 

 

au

V
S s

r ≡                                                                                                                (1.107) 

 

The slide/roll ratio is varied (in steps of 0.1) between 0.1 and 2.0, to cover the range 

of values met in most engineering applications. Also, three oil-bath thicknesses hin 

are used in the study, namely 50 µm, 100 µm and 500 µm, in order to cover the cases 

of starved and flooded elastohydrodynamic contacts. The size of the contamination 

particles used for the study is represented by their diameter, which takes three values, 

namely 5 µm, 10 µm and 20 µm, in order to cover the cases of small, medium and 

relatively large particles. In summary, the values of the parameters varied during this 

example are presented in table 1.2. 

 

Table 1.2 

Values of the parameters that vary in the example 

Particle diameter D = 5, 10, 20 µm 

Oil bath thickness hin = 50, 100, 500 µm 

Slide/roll ratio Sr = 0.1-2.0 (in steps of 0.1) 

 

 

The figures presented in the following eight sub-sections (six figures for each sub-

section) have a horizontal axis representing the slide/roll ratio, whereas the vertical 

axis represents quantities (explained in each sub-section), which test the likelihood of 

particle entrapment and the likelihood of particle accumulation in the inlet zone of 

the test contact. The curves shown in the figures are 3rd degree polynomial fits, 

which give a good qualitative view in order to collect useful results and draw 

meaningful conclusions. Important general conclusions are summarized in section 

1.4. 
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1.3.1 The likelihood of particle accumulation – risk of lubricant 

starvation 
 

The likelihood of particle accumulation is checked by calculating the percentage of 

particles expelled at least fifty times from the contact, based on the number of 

particles studied. The number of “fifty” rejections was chosen arbitrarily as an 

indication of prolonged presence of a particle just outside the critical radius ra, where 

a particle comes in contact with both the ball and the flat. Obviously, the more times 

a particle is expelled from the contact, the higher is the likelihood of other particles 

to gather around the first one, which stands as an obstruction in front of the ball, and 

thus, the higher is the likelihood of particle accumulation in the inlet zone of the 

contact. Particle accumulation results in obstruction of the lubricant flow and thus 

poor lubricant replenishment of the contact. The end effect could be oil starvation 

and increased wear, or, even worse, film breakdown and scuffing. 

 In the series of the following six figures, the effects of the oil bath thickness, 

particle size and slide/roll ratio on the probability of particle accumulation are 

examined. 
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Figure 1.5 

 

 

Figure 1.5 shows that the likelihood of small-particle rejection from the contact 

increases generally following an increase of the slide/roll ratio. The greatest increase 

is located in the area 0.1 < Sr < 0.6, as well as for high sliding conditions (Sr >1.8). 

Particle accumulation and oil starvation are more likely for thicker films and smaller 

particles. The likelihood of small-particle rejection is diminished for very low 

slide/roll ratios. 
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Figure 1.6 

 

 

According to figure 1.6, the effect of the oil-bath thickness on the rejection of 

medium sized particles is rather small. In agreement with figure 1.5, the likelihood of 

particle rejection from the contact is diminished for low slide/roll ratios, whereas it 

stays approximately constant for 0.7 < Sr < 1.6, and increases steeply for Sr > 1.6 and 

up to the maximum slide/roll ratio studied (Sr = 2). Therefore, it is shown again that 

high-sliding conditions are in favor of particle rejection from the contact (and thus in 

favor of particle accumulation). 
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Figure 1.7 

 

 

Figure 1.7 shows that larger (20 µm) particles are less likely to be repetitively 

expelled from the contact, compared with smaller particles (5 µm and 10 µm - 

figures 1.5 and 1.6). Qualitatively, the curves are similar to those in figures 1.5 and 

1.6, and the same general conclusions apply here as well. 
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Figure 1.8 

 

 

Figure 1.8 shows that, for thin oil bath films, medium sized (10 µm) particles have a 

greater likelihood of repetitive rejection compared with small (5 µm) and large (20 

µm) particles. Rejection is increased for high-sliding conditions. 
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Figure 1.9 

 

 

Figure 1.9 is similar to figure 1.8, but refers to medium-sized oil bath films (100 µm) 

instead of thinner films (50 µm). The findings are in qualitative agreement with those 

for figure 1.8. High-sliding conditions promote particle rejection and bigger particles 

are the most difficult to reject. 
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Figure 1.10 

 

 

Figure 1.10, referring to relatively thicker oil bath films (500 µm) shows again that 

medium sized particles (10 µm) are more easily expelled from the contact, compared 

with smaller and larger particles. Low-sliding conditions promote particle 

entrapment whereas the opposite is true in the region of high sliding. 
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1.3.2 The likelihood of particle-ball collisions 
 

The likelihood of particle-ball collisions is checked by finding the percentage of 

particles which are to collide with the ball, based on the number of particles studied. 

The number of particles studied is equivalent to the number of initial positions of a 

particle in the reference volume. If a particle is left free to travel in the flow from its 

initial position in the reference volume, its calculated trajectory shows if it will 

eventually collide with the ball or if it will bypass it without any contact (collision). 

Particles which bypass the ball by avoiding any contact with it could be considered 

as being virtually harmless, because they neither obstruct the lubricant flow nor 

cause any surface damage. Equivalently, the higher the number of particles which 

collide with the ball, the higher the risk of particle accumulation (which may result in 

lubricant starvation) and/or surface damage. Therefore, the knowledge of the 

likelihood of particle-ball collisions offers a good evaluation of the effectiveness of 

lubrication and the “healthy” operation of the contact. 
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Figure 1.11 

 

 

Figure 1.11 shows that the likelihood of first-time collisions of small particles with 

the ball is significantly increased for low slide/roll ratios (Sr < 0.5) and it gradually 

drops with increasing the sliding of the contact. The conclusion is that, in order to 

increase the number of small particles that bypass the ball, the operational area 

Sr < 0.5 must be avoided. 
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Figure 1.12 

 

 

Figure 1.12 shows again that for Sr < 0.5, the likelihood of particle first-time 

collisions with the ball is significantly increased. In order to minimize the number of 

particles that are to collide with the ball, the slide/roll ratio must be kept to values 

around or above 1.0. Finally, figure 1.12 shows that thicker films (blue line) “help” 

the 10 µm particles bypass the ball. 
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Figure 1.13 

 

 

In agreement with figures 1.11 and 1.12, figure 1.13 shows that for Sr < 1, the 

likelihood of particle-first-time-collisions with the ball is significantly increased.  

On the other hand, high-sliding conditions seem to increase the possibility of 

particle-ball collisions when the oil bath thickness approaches the size of the 

particles (hin = 50 µm versus D = 20 µm), which is to be expected due to the reduced 

back-flow of the oil against the size of the particles. 
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Figure 1.14 

 

 

Figure 1.14 shows that for thin oil bath films (hin = 50 µm), the smaller particles 

(D = 5 µm) are the most likely to bypass the ball. Low slide/roll ratios result in more 

particle-ball collisions for all sizes of particles. 
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Figure 1.15 

 

 

Like figure 1.14, figure 1.15 shows that the smaller particles are more easily by-

passing the ball. The number of particle-ball collisions is profoundly maximized for 

low-sliding conditions of the contact (Sr < 0.5). 
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Figure 1.16 

 

 

The study of figure 1.16, where hin = 500 µm, leads to the same conclusions as in 

figures 1.14 and 1.15, where hin is 50 µm and 100 µm, respectively. In other words, 

the smaller (5 µm) patrticles involve less risk to end-up colliding with the ball rather 

than bypassing it. 
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1.3.3 An early assessment of the likelihood of particle accumulation 
 

In sub-section 1.3.1, the likelihood of particle accumulation in the inlet zone of the 

contact is evaluated by calculating the percentage of particles, which are expelled at 

least fifty times from the contact, based on the number of particles put in the 

reference volume. In the present sub-section, the calculation of the percentage of 

particles that are to be expelled at least once from the contact, based on the number 

of particles that are to collide with the ball, gives a pre-estimation of the likelihood of 

particle accumulation in the inlet zone of the contact. A first-time particle rejection is 

an indication of the beginning of particle accumulation. Obviously, the results of 

sub-section 1.3.1 are stronger than the results of the present sub-section as far as 

lubricant starvation is concerned, but the present sub-section serves as another 

approach of checking the same concept, namely the probability of lubricant 

starvation. 
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Figure 1.17 

 

 

Figure 1.17 shows the likelihood of first-time rejection for a particle that will collide 

with the ball. The aforementioned likelihood is higher for low slide/roll ratios and is 

gradually reduced for increasing sliding. The marked difference for the red line is to 

be explained by the fitting method used (3rd degree polynomial). With linear 

regression, the red line would have a negative slope and follow closely the other two 

curves.  
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Figure 1.18 

 

 

Figure 1.18 shows that the likelihood of first-time rejection of a medium-sized 

(10 µm) particle that is to collide with the ball is not greatly affected by either the 

oil-bath thickness or the slide/roll ratio. There is a tendency for rejection for high 

slide/roll ratios. 
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Figure 1.19 

 

 

According to the above figure, larger (20 µm) particles are less easily expelled (or, 

equivalently, are more easily entrapped) for slide/roll ratios around 0.8-1.2. 
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Figure 1.20 

 

 

Figure 1.20 shows that, for thin oil-bath films, the smaller (5 µm) particles are more 

likely to be at least one time expelled, compared with the larger particles (10 µm and 

20 µm ones). An explanation for this behaviour is the effect of lubricant backflow, 

which affects smaller particles more than the larger ones. The situation is reversed 

for higher slide/roll ratios, as shown in the figure, probably because surface curvature 

plays a more important role further outside the Hertzian zone of the contact against 

the lubricant backflow, which is weaker, as is expected for the larger particles (larger 

particles have obviously a greater contact distance ra). 
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Figure 1.21 

 

 

Figure 1.21 shows that, for medium (100 µm) oil-bath thickness, medium-sized 

(10 µm) particles are more likely to be immediately entrapped, after they collide with 

the ball, in comparison with smaller (5 µm) and larger (20 µm) particles. 
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Figure 1.22 

 

 

Figure 1.22 shows that, for relatively thick (500 µm) oil-bath films, smaller (5 µm) 

particles are more likely to be expelled (at least once), after a collision with the ball, 

compared with larger particles. This is obviously so for low slide/roll ratios, where 

lubricant backflow affects smaller particles more than larger ones. 
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1.3.4 The likelihood of particle accumulation 
 

The likelihood of particle accumulation and lubricant starvation is assessed in sub-

section 1.3.1, and is based on the number of particles studied (put in the reference 

volume). In the present sub-section, the likelihood of particle accumulation is 

approached in a slightly different way; namely, the study is based on the particles 

that are to collide with the ball, rather than the overall number of particles studied. In 

this way, the consequences of a particle colliding with the ball can more readily be 

realized and possible risks be evaluated. 
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Figure 1.23 

 

 

According to figure 1.23, the likelihood of repetitive small-particle rejection from the 

contact is generally increased by increasing the slide/roll ratio. The oil-bath thickness 

does not appear to play an important role. For reduced risk of particle accumulation 

and oil starvation, the preferred area of operation for the slide/roll ratio is the area 

Sr < 1. However, the latter may increase the number of particles being over-rolled 

and, thus, increase the risk of surface damage. 

 

 

 



§ 1.3.4 The likelihood of particle accumulation  93

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

P
e

rc
en

ta
ge

 o
f p

ar
tic

le
s 

ex
pe

lle
d 

at
 le

a
st

 5
0 

tim
es

, c
om

pa
re

d
w

ith
 th

e 
nu

m
be

r 
of

 p
ar

tic
le

s 
w

hi
ch

 a
re

 t
o 

co
lli

de
 w

ith
 th

e 
ba

ll.

D = 10 µm

h
in =   50 µm

hin = 100 µm

hin = 500 µm

 

 

Figure 1.24 

 

 

Figure 1.24 shows that medium-sized (10 µm) particles behave similarly to smaller 

(5 µm) ones, when considering the likelihood of repetitive particle rejection from the 

contact (see figure 1.23). The effect of the oil bath thickness is even less influential 

in this case and the preferred area of operation for the slide/roll ratio, in order to 

reduce the risk of particle accumulation and fluid starvation, is the area Sr < 1 

(approximately). 
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Figure 1.25 

 

 

According to figure 1.25, repetitive particle rejection of the larger (20 µm) particles 

is less dependent on the slide/roll ratio. The most dangerous area for oil starvation is 

again close to the higher bound of the slide/roll ratio, whereas the risk is minimized 

for Sr < 0.6. 
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Figure 1.26 

 

 

Figure 1.26 shows clearly that, for thin oil-bath films, the likelihood of repetitive 

particle rejection from the contact increases when the size of the particles is reduced. 

In general, the preferred area of operation in order to reduce the risk of oil starvation 

is the area Sr < 1 and, as has already been shown, high-sliding conditions increase the 

risk of particle accumulation. 

 

 

 

 



§ 1.3.4 The likelihood of particle accumulation  96

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

P
e

rc
en

ta
ge

 o
f p

ar
tic

le
s 

ex
pe

lle
d 

at
 le

a
st

 5
0 

tim
es

, c
om

pa
re

d
w

ith
 th

e 
nu

m
be

r 
of

 p
ar

tic
le

s 
w

hi
ch

 a
re

 t
o 

co
lli

de
 w

ith
 th

e 
ba

ll.

h
in = 100 µm

D =   5 µm

D = 10 µm

D = 20 µm

 

 

Figure 1.27 

 

 

Figure 1.27 is qualitatively similar to figure 1.26 and refers to medium (100 µm) oil-

bath thickness. The conclusions are the same as those for figure 1.26. 

 

 

 

 

 

 

 



§ 1.3.4 The likelihood of particle accumulation  97

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0

5

10

15

20

25

30

35

40

45

50

55

60

65

P
e

rc
en

ta
ge

 o
f p

ar
tic

le
s 

ex
pe

lle
d 

at
 le

a
st

 5
0 

tim
es

, c
om

pa
re

d
w

ith
 th

e 
nu

m
be

r 
of

 p
ar

tic
le

s 
w

hi
ch

 a
re

 t
o 

co
lli

de
 w

ith
 th

e 
ba

ll.

h
in = 500 µm

D =   5 µm

D = 10 µm

D = 20 µm

 

 

Figure 1.28 

 

 

Figure 1.28, referring to relatively thick oil-bath films, confirms yet again the 

conclusions drawn from studying figures 1.26 and 1.27, which refer to small and 

medium oil-bath films. In other words, the risk of particle accumulation in the inlet 

zone of the contact is greater for smaller particles than for larger ones. 
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1.3.5 The likelihood of particle accumulation and entrapment – 

  overall risk of damage 
 

The likelihood of particle accumulation and entrapment is approached by calculating 

the percentage of particles trapped-although-initially-expelled, based on the number 

of particles initially expelled (expelled at least one time from the contact). An 

“initially” expelled particle is an early indication of possible particle accumulation, 

which may lead to lubricant starvation, as has already been explained. If the 

aforementioned “initially expelled particle” is finally trapped, the contact may further 

suffer from surface damage, because of the passage of the particle from the elasto-

hydrodynamic gap. Therefore, the present sub-section provides information on the 

overall risk of damage, either due to lubricant starvation or due to surface damage 

owing to particle squashing in the elastohydrodynamic gap. 
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Figure 1.29 

 

 

Figure 1.29 shows that the likelihood of an initially expelled, small (5 µm) particle to 

become entrapped is essentially independent of the oil-bath thickness and is 

maximized for slide/roll ratios around 1. 
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Figure 1.30 

 

 

According to figure 1.30, medium-sized (10 µm) particles are more easily entrapped 

(after an initial rejection) for slide/roll ratio around 1.5. The oil-bath thickness does 

not appear to influence this behaviour. 
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Figure 1.31 

 

 

Figure 1.31 shows that for the larger (20 µm) particles, the likelihood of entrapment 

after an initial rejection from the contact tends to, generally, increase by increasing 

the slide/roll ratio, whereas it is essentially independent of the oil-bath thickness. The 

risk of entrapment is also relatively high for conditions of low sliding (Sr < 0.5) due 

to the reduced effect of the backflow of the lubricant on these big particles. 
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Figure 1.32 

 

 

According to figure 1.32, which refers to thin oil-bath films (starved contacts), 

smaller particles behave rather differently in comparison with larger ones. This is due 

to the fact that smaller particles are affected by the changes of the oil flow more than 

the larger particles. For high sliding conditions, the combined risk of damage 

(particle accumulation + entrapment) is lower for the smaller particles. 
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Figure 1.33 

 

 

Figure 1.33, referring to medium oil-bath thickness, shows the same particle 

behaviour as in figure 1.32, namely larger particles are more easily entrapped (after 

an initial rejection) for high slide/roll ratios than smaller particles. 
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Figure 1.34 

 

 

Figure 1.34 leads to the same conclusions as in figures 1.32 and 1.33, which refer to 

thinner oil bath films. 
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1.3.6 The likelihood of particle entrapment – risk of surface damage 
 

The likelihood of particle entrapment is assessed by calculating the percentage of 

particles trapped in the elastohydrodynamic gap, based on the number of particles 

studied (put in the reference volume). In this way, it can readily be seen how risky it 

is for particle entrapment when a particle is “allowed” to be present in the lubricant. 

It must be noted that the risk of surface damage may not be proportional to the 

likelihood of particle entrapment, because the nature, extent and even possibility of 

surface damage depends on the hardness of the particles relatively to the hardness of 

the surfaces, the size of the particles relatively to the central film thickness of the 

contact, the material mechanical and thermal properties of both the particles and the 

counterfaces (ball and flat), etc. In other words, the likelihood of particle entrapment 

may be high and the risk of surface damage may be very low, because, for example, 

the particles are very small and/or very soft. 
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Figure 1.35 

 

 

Figure 1.35 shows that the likelihood of particle entrapment is not greatly affected by 

the oil-bath thickness. An important observation is that the likelihood of entrapment 

(and thus the risk of surface denting or scratching) is significantly lower for high 

slide/roll ratios (Sr > 1.5). Moreover, low sliding conditions promote particle 

entrapment. 

 

 

 

 

 

 



§ 1.3.6 The likelihood of particle entrapment – risk of surface damage  107

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e 

of
 p

ar
tic

le
s 

tr
a

pp
ed

, c
om

pa
re

d
w

ith
 th

e 
nu

m
be

r 
of

 p
ar

tic
le

s 
st

u
di

ed
.

D = 10 µm

hin =   50 µm

h
in = 100 µm

hin = 500 µm

 

 

Figure 1.36 

 

 

Figure 1.36 refers to medium-sized (10 µm) particles and shows again, as in figure 

1.35, that the risk of particle entrapment is generally increased for low slide/roll 

ratios and decreased for high sliding conditions. 
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Figure 1.37 

 

 

Figure 1.37 shows that large particles are more easily entraped for low slide/roll 

ratios (Sr < 0.5). There appears to be a preferred region of the slide/roll ratio around 

1, where the risk of entrapment is minimized. 
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Figure 1.38 

 

 

According to figure 1.38, the smaller (5 µm) particles are more difficult to get 

trapped in the elastohydrodynamic gap compared with the larger particles, for thin 

oil-bath films. The difference is less pronounced between the medium-sized and the 

larger particles. 
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Figure 1.39 

 

 

Qualitatively, figure 1.39, which refers to medium oil-bath films (hin = 100 µm), 

shows the same behaviour as in figure 1.38. The risk of particle entrapment is 

maximized for low slide/roll ratios and decreases in the high slide/roll ratio region. 
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Figure 1.40 

 

 

Finally, figure 1.40, which refers to relatively thick oil-bath films, confirms the 

results of figures 1.38 and 1.39, which refer to thinner oil-bath films; namely, the 

smaller particles are more difficult to become entrapped, with the risk being 

increased for low slide/roll ratios. 
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1.3.7 The likelihood of particle entrapment – another estimation 
 

An alternative estimation of the likelihood of particle entrapment (as compared with 

sub-section 1.3.6) is achieved by calculating the percentage of particles trapped, 

based on the particles that are to collide with the ball. In this way, it can readily be 

seen how risky it is for particle entrapment when a particle is “allowed” to reach the 

ball and collide with it. In comparison with sub-section 1.3.6, the results of the study 

of the present sub-section take as granted the fact that the lubricant is contaminated 

by solid particles, whereas the results of sub-section 1.3.6 aim to show what might 

have been avoided if the lubricant were not contaminated. 
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Figure 1.41 

 

 

Figure 1.41 shows that smaller (5 µm) particles that collide with the ball are trapped 

more easily if the slide/roll ratio is around 1, regardless of the oil-bath thickness. The 

risk of entrapment is reduced for lower and higher slide/roll ratios. 
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Figure 1.42 

 

 

Figure 1.42 shows that medium-sized (10 µm) particles that collide with the ball are 

more easily trapped for slide/roll ratios around 1.5. Low and high sliding conditions 

are to be preferred in order to minimize the risk of particle entrapment and possible 

surface damage. The variation of oil-bath thickness has a weak effect on the results. 
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Figure 1.43 

 

 

Larger (20 µm) particles behave similarly to medium-sized (10 µm) ones (figure 

1.42). The maxima and minima of the likelihood of particle entrapment can easily be 

located on the above figure. 
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Figure 1.44 

 

 

Figure 1.44 shows that, in the case of thin oil-bath films (starved contacts), 5 µm 

particles have a profoundly smaller likelihood of entrapment for low and high 

slide/roll ratios, compared with the larger particles. The differences appear to be 

largely dependent on the amount of sliding in the contact. 
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Figure 1.45 

 

 

The results shown in figure 1.45 (which refers to medium oil-bath thickness) are in 

agreement with those of the previous figure 1.44 for thinner oil-bath films and the 

same conclusions apply here as well. 

 

 

 

 

 

 

 

 



§ 1.3.7 The likelihood of particle entrapment – another estimation  118

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

P
er

ce
nt

ag
e 

of
 p

a
rt

ic
le

s 
tr

ap
p

ed
, c

om
pa

re
d 

w
ith

 th
e

nu
m

be
r 

o
f p

ar
tic

le
s 

w
hi

ch
 a

re
 to

 c
ol

lid
e 

w
ith

 th
e

 b
al

l hin = 500 µm

D =   5 µm

D = 10 µm

D = 20 µm

 

 

Figure 1.46 

 

 

Figure 1.46, which refers to thicker oil-bath films, is qualitatively similar to figures 

1.44 and 1.45, which refer to thinner films. The same conclusions apply here as well. 
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1.3.8 The likelihood of lubricant starvation – an indirect approach 
 

An indirect approach of the likelihood of lubricant starvation, owing to particle 

presence in the inlet zone of the contact, is taken by calculating the average travelling  

time of those particles which are to be entrapped. Obviously, the more time a particle 

spends travelling in the lubricant (in the inlet zone, for specified sliding and rolling 

velocities of the contact) before being entrapped, the higher is the risk of lubricant-

flow obstruction and, thus, the poorer the lubrication of the contact may be. The 

lubricant-flow upsetting, owing to the presence of particles in the flow, is of course 

directly dependent on the size of the particles. Therefore, the results of the present 

sub-section must be interpreted only as an indication of the likelihood of lubricant 

starvation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



§ 1.3.8 The likelihood of lubricant starvation – an indirect approach  120

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0.00

0.04

0.08

0.12

0.16

M
ea

n 
tr

av
el

lin
g

 ti
m

e 
(m

s)
 o

f p
ar

tic
le

s
w

hi
ch

 a
re

 to
 b

e 
en

tr
ap

pe
d

D = 5 µm

hin =   50 µm

h
in = 100 µm

hin = 500 µm

 

 

Figure 1.47 

 

 

Figure 1.47 shows that the mean travelling time of small (5 µm) particles that are to 

become entrapped is significantly higher for the lowest bound of slide/roll ratios 

studied (Sr < 1). The influence of the oil-bath thickness on the results is insignificant. 
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Figure 1.48 

 

 

According to figure 1.48, medium-sized (10 µm) particles spend considerably more 

time travelling if the oil-bath is relatively thick (hin = 500 µm) and the slide/roll ratio 

low. 

 

 

 

 

 

 

 

 



§ 1.3.8 The likelihood of lubricant starvation – an indirect approach  122

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Slide/roll ratio

0.04

0.08

0.12

0.16

0.20

M
ea

n 
tr

av
el

lin
g

 ti
m

e 
(m

s)
 o

f p
ar

tic
le

s
w

hi
ch

 a
re

 to
 b

e 
en

tr
ap

pe
d

D = 20 µm

hin =   50 µm

h
in = 100 µm

hin = 500 µm

 

 

Figure 1.49 

 

 

Figure 1.49 shows that, for larger (20 µm) particles, the mean travelling time before 

entrapment is gradually reduced as the sliding of the contact increases (obviously), 

and stays essentially insensitive to oil-bath thickness variations throughout the 

slide/roll ratio band studied. The behaviour (motion) of the larger particles is 

smoother, as can be realized by comparing figure 1.49 with figure 1.47, probably 

because the bigger particles are heavier and more difficult to follow flow changes. 
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Figure 1.50 

 

 

Figure 1.50 shows that, for thin oil-bath films (hin = 50 µm), larger particles spend 

considerably more time travelling before entrapment, compared with smaller 

particles. This is what should be expected, considering the mass difference of the 

particles. It is easy to find that the 20 µm spherical particles are 64 times heavier than 

the 5 µm ones. 
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Figure 1.51 

 

 

Figure 1.51 shows again (as in figure 1.50) that larger (20 µm) particles spend 

significantly more time travelling before entrapment, in comparison with smaller 

particles. The lower the slide/roll ratio, the greater is the travelling time. 
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Figure 1.52 

 

 

Finally, figure 1.52 shows again how larger (20 µm) particles need more travelling 

time before entrapment. 
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1.4 Conclusions 
 

There are not many publications containing experimental results from assemblies set 

up to study the behaviour of particles in the inlet zone of lubricated contacts. 

Moreover, at the time of writing this thesis and to the best of the author’s knowledge, 

theoretical models for the prediction of particle behaviour in the inlet oil flow of 

elastohydrodynamic contacts were virtually non-existent, at least as published 

material. There are two important publications containing experimental results, 

which fit the structure of the present theoretical model and provide readily 

comparable conclusions. The aforementioned publications are those of Wan and 

Spikes (1988), and Dwyer-Joyce and Heymer (1996). Useful results can also be 

found in an earlier paper of Wan and Spikes (1986). 

 Undoubtedly, a computer model has significant advantages when compared 

with experimental studies of this sort, mainly because of the following reasons. 

(a) Minimal cost of running. Experiments are usually expensive to set up, whereas 

the computer comes as a very cheap alternative. 

(b) Volume of simulation work and duration of experiments. It is obvious that a 

computer allows for an, essentially, unlimited number of simulations to be 

performed fast and always under completely controlled conditions. On the other 

hand, experiments suffer from dramatically longer running times and initial 

conditions are difficult to be controlled precisely. For example, the size of 

particles studied and the oil-bath thickness are not easily kept under strict control 

between successive experiments, whereas no such constraint exists for successive 

computer simulations. Moreover, a computer simulation can be completed in a 

few minutes, covering a large range of operational parameters like, for example, 

the slide/roll ratio, whereas an experimental study of the same informational 

content may require at least several days. 

 

 Detailed results and conclusions were presented in the examples of section 

1.3. The study involved small (5 µm in diameter), medium (10 µm) and large (20 

µm) particles, and thin (hin = 50 µm), average (100 µm) and relatively thick 

(500 µm) oil-bath thicknesses in order to cover the cases of starved and flooded 

contacts. The slide/roll ratio was in the range [0.1,2.0], whereas the calculated central 

film thickness hc (figure 1.1) was less than 1 µm. The geometry of the contact was 
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that for a typical elastohydrodynamic application. The results obtained can be 

categorized as follows. It is useful at this point to comment on the unevenness of 

some of the curves presented in figures 1.5-1.52. A lack of smoothness in some 

curves is due to the following reasons: 

(1) The curves shown are 3rd degree polynomial fits. A (smoother) 2nd or even 1st 

degree polynomial fitting was rejected because it would cover some important 

minima and maxima of the curves. 

(2) The number of particle trajectories studied is finite (100). Some of the quantities 

shown on the vertical axis of the figures have very low values, such that a small 

change can have a big impact on the appearance of the curves. For example, if for  

hin = 100 µm there is only one 5 µm particle trapped (out of eight particles that 

collide with the ball) and for hin = 500 µm there are just two particles trapped, 

then the difference of the relevant curves at the specific slide/roll ratio would be 

%5.12100
8

12
=⋅

−
. If for a slightly different slide/roll ratio there is again one 

particle trapped, it starts to make sense why some curves would appear to be 

undulated. 

(3) Small particles (like the 5 µm particles used in the study) are very light (64 times 

lighter than the 20 µm particles) and follow rather easily the changes of the oil 

flow for different slide/roll ratios. This has obvious effects on some curves, in the 

same way other curves, as those referring to the bigger particles may appear 

smoother. It is easy to understand this concept by visualizing the chaotic motion 

of smoke particles in the air. Another way of saying this is by considering that, as 

can be calculated, the limiting speed of the particles in the fluid under the action 

of gravity alone is 0.8 µm/s for the 5 µm particles, whereas it is 13.4 µm/s 

(sixteen times more) for the 20 µm particles. 

(4) Smaller particles are able (due to their size) to approach the contact more than 

larger particles. Hence, smaller particles are able to approach an area where the 

back flow of the contact is stronger. The opposite is true for the larger particles, 

which essentially stay in an area where the streamlines of the flow are smoother. 

 

 After the previous explanations, it is now time to collect the results of section 

1.3. These results are summarized below. 
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(a) Thick oil bath (hin = 500 µm) and small particles (D = 5 µm) 

This combination increases the risk of lubricant starvation due to increased 

accumulation of particles in front of the ball. As a further consequence, scuffing 

resulting from loss of lubricant support (film breakdown) is more likely to 

happen. 

 

(b) Thick oil bath (hin= 500 µm) and large particles (D = 20 µm) 

Large particles are more easily trapped for two reasons: 

1. As is known, in a closing elastohydrodynamic gap, there exists a small fluid 

jet directed outwards (upstream of the main flow) in front of the gap. Very 

small particles that come within the vicinity of this jet are actually pushed 

away from the gap or may be trapped in a micro-vortex (see for example 

Shieh and Hamrock, 1991). On the other hand, large particles are less 

susceptible to the lubricant back-flow since they collide with the ball 

relatively far away from the elastohydrodynamic gap. Therefore, they are 

more easily trapped, especially in combination with reason 2 below. 

2. The solid frictional forces on the large particles (owing to their contact with 

the flat and the ball) are greater in comparison with those for smaller 

particles. This is due to the increased pressure between a large particle and 

the counterfaces. 

Finally, particle accumulation is increased for higher slide/roll ratios. This means 

that inlet blockage by particles and oil starvation is more likely to happen for 

high sliding conditions. This has been shown experimentally by, for example, 

Wan and Spikes (see Wan and Spikes, 1988, page 20, conclusion 5), and Cusano 

and Sliney (1982). 

 

(c) Thin oil bath (hin = 50 µm) 

A thin film results in a reduced lubricant back-flow as well as in a smaller 

elastohydrodynamic gap. Consequently, both small and large particles get more 

easily trapped and pass through the gap. This obviously increases the risk of 

surface damage as well as the risk of oil starvation. 
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(d) Very large particles (D > 100 µm) 

Very large particles (in comparison with the central film thickness of the contact) 

find it more difficult to be entrapped owing to the surface curvature in the inlet 

zone of the contact, which means that, the further away from the gap, the higher 

is the x-component of the normal force of the ball on the particle (N1,x), as can be 

realized from figure 1.1. For example, particles larger than 100 µm are more 

susceptible to being expelled than 10 µm particles in a 0.5 µm elastohydro-

dynamic gap. This way, and because of their size, very large particles tend to 

obstruct oil flow and to cause oil starvation. Experimental verification for this 

behaviour can found in Wan and Spikes (1988). 

 

 Figure 1.53 shows graphically a summary of the previously listed conclusions 

and serves as a rough general index. 

 

 

 

 

Figure 1.53 Summary of conclusions for chapter 1. 
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 An example of the application of the model is presented in figure 1.54. 

 

 

Figure 1.54 1000 randomly chosen initial positions of a particle 

       in the upper half of the reference volume. 

 

 

Figure 1.54 shows a typical example where the reference volume has length 

L = 10·RH  and semi-width  S = 3·RH (RH is the radius of the Hertzian contact circle). 

In the figure, the randomly chosen initial positions of a test particle (1000 in total) 

are marked by red dots. 

 Following the same example, which refers to 20 µm particles in a 100 µm oil 

bath, figure 1.55 shows the locations in front of the ball that a particle, which is 

found to collide with the ball, will “choose”. The presented semi-circle marks the 
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distance from the centre of the contact where a particle will come in contact with 

both the ball and the flat. 
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Figure 1.55 Example of particle distribution in front of a ball 

         (data: D = 20 µm, hin = 100 µm). 

 

 

 Finally, figure 1.56 shows the “preferred” trajectories of a particle in front of 

a ball (under the same conditions as in figure 1.55). The particle is initially put at a 

position on the upper half of the reference oil volume, which explains the lack of 

symmetry in the figure. It is immediately noticable how some particles bypass the 

ball, while others run onto it and are either entrapped or expelled. It must be noticed 

that a trajectory may start from anywhere in the reference volume and, therefore, 

some particles appear to have a shorter history in the figure compared with others. 
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For the example studied, it was found that, out of 100 particle trajectories calculated, 

17 of them belong to particles that would, eventually, be entrapped and pass under 

the ball. Therefore, it may be said that, for this particular example, there is a 17 % 

chance of particle entrapment. 
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Figure 1.56 Example of possible trajectories of a single sized particle 

             put in the upper half of the reference oil volume 

             (data: D = 20 µm, hin = 100 µm). 

 

 

 Figure 1.56 shows clearly that particles which are close to the centreline of 

the flow, will remain there until they meet the ball, whereas particles located away 

from the centreline of the flow are swept aside. This has been experimentally 
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observed by Dwyer-Joyce and Heymer (1996, see figure 7 in their paper). The 

phenomenon is easily explained by the fact that the y-velocity component of the fluid 

is very weak near the centreline and, essentially, zero on the centreline (where y = 0), 

owing to the symmetry of the flow. 

 The accumulation of particles in some areas (figure 1.56) and especially in 

the centreline of the flow may have catastrophic effects in the lubrication of the 

contact, not only due to the obvious obstruction of the oil replenishment of the 

contact, but also due to the risk of large body formation. The latter happens when the 

accumulated particles form bonds which help them construct a bigger body. It is 

possible that this body may be entrapped and cause surface damage. There are then 

two possibilities: 

(1) The large body enters the contact and remains one part as it is being squashed. 

(2) The large body enters the contact and, at some point, agglomerates, resulting in 

numerous smaller particles, which, being deeper inside the elastohydrodynamic 

gap, are also entrained (see for example Oktay and Suh (1992)). 

In either case, the risk of lubricant starvation and the (following) risk of surface 

damage are obvious. 

 

 

 

 

1.5 Computer program and simulation 
 

The results presented in this chapter were obtained by a computer program, compiled 

by the author for the purposes of this work. It is worth noting that the computer 

simulation serves as a very beneficial alternative to costly experimentation, having 

the advantages of speed, control over the initial conditions and versatility. The 

computer code is written in FORTRAN 90. 

 The simulation starts with the creation of a 3-dimensional grid of equidistant 

nodes in the three principal directions (figure 1.2), such that it covers a space of ten 

Hertzian contact circle radii in length (along the x-axis; Nx = 10), four Hertzian 

contact circle radii in width (along the y-axis; Ny = 2), and is bounded by the free 

surface of the lubricant, the wall of the ball and the flat. The number of grid nodes 

along a principal direction is chosen by the program user at the beginning of the 
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program. The configuration is symmetrical about plane y = 0, and this is taken into 

account in the calculations. The space covered by the grid is the reference fluid 

volume. The fundamental fluid flow problem is solved in the reference volume 

according to the analysis of sub-section 1.2.1. The boundary conditions used in the 

solution are the prescribed velocities of the fluid at the boundaries of the reference 

volume. 

 The simulation begins by “putting” a particle at a randomly chosen position 

in the reference volume. The particle then starts a motion in the fluid, governed by 

the fluid forces and its inertia. If the particle meets the ball in its path, a local force 

equilibrium analysis reveals if it will be expelled or it will pass through the gap 

between the ball and the flat. The force analysis involves solid frictional forces 

between the particle and the surrounding solids (the ball and the flat), as well as the 

fluid forces and the inertial force of the particle. If the particle is expelled, it starts a 

new journey in the fluid at a somehow randomly chosen position, near the position of 

contact with the ball. A new trajectory is then calculated and the calculations are 

repeated until the particle either bypasses the ball or is trapped and passes under the 

ball. There is a pre-set maximum number of particle rejections in the program, 

chosen equal to fifty for the present study. A large number of rejections indicates that 

the particle tends to stay in the inlet zone of the contact for a relatively prolonged 

time. This behaviour may result in poor replenishment of the contact, because the 

particle obstructs the fluid flow. The situation can become much worse if other 

particles gather around the first one. In the latter case, severe fluid starvation can 

cause a film breakdown and result in scuffing wear. Therefore, the study of the 

particle rejection mechanism is of particular importance in assessing the 

effectiveness of the lubrication in contaminated environments. 

 Collecting the history of motions (trajectories) of several particles (usually 

more than 100), various useful conclusions can be drawn. Global conclusions can be 

drawn after a parametric study by studying the effects of parameters like the 

slide/roll ratio etc. It must be mentioned that all the parameters of the model can be 

conveniently altered by the user of the computer program. These parameters are: 

• The number of nodes of the grid in all three principal directions. 

• The radius of the ball. 

• The moduli of elasticity and the Poisson ratios of the ball and the flat. 
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• The load on the ball. 

• The dynamic viscosity, the density, and the pressure-viscosity coefficient of the 

fluid. 

• The rolling speed of the ball. 

• The slide/roll ratio. 

• The oil bath thickness (figure 1.1) 

• The diameter of the particle. 

• The density of the material of the particle. 

• The number of particles to study. 

• The solid friction coefficients. 

 

 Other parameters depend on the above listed parameters and are 

automatically calculated in the program. It is noted here that the geometry of the 

contact is the actual deformed geometry, as this is found by accounting for the 

deformations of the ball and the flat due the elastohydrodynamic pressures in the 

contact. 

 Following the completion of the calculation of the trajectories of all particles, 

the whole process is repeated ten times, each time with different initial positions of 

the particles (always chosen randomly), to ensure the generality of the results. The 

results comprise the average figures from the ten loops of the program. The 

complexity of the calculations causes the program to run relatively slowly, especially 

if the number of particles is relatively large (like, for example, 500). In a personal 

computer with a 266 MHz INTEL Pentium-II processor, the program needs a CPU 

time that varies from a few minutes to one hour (roughly speaking), in order to 

complete all tasks. This is of course also dependent on the number of nodes used for 

the grid. For the examples of section 1.3, the grid in the reference volume has 

400×100×10 nodes (length×width×thickness). Consequently, spatial steps ∆x and ∆y 

are of the order of 2 µm, which is considered as adequate discretization. Finally, a 

flow chart of the model is shown in figure 1.4. 
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CHAPTER 2 

 

MOTION AND DEFORMATION OF A SOFT 

PARTICLE IN AN ELASTOHYDRODYNAMIC 

LINE CONTACT 

 

 

 

2.1 Introduction 
 

In order to study the possibility of surface damage caused by a solid particle that is 

trapped in an elastohydrodynamic contact, a model of the behaviour of the particle 

inside the elastohydrodynamic gap has to be created. This model must give a good 

description of the motion of the particle as it is being squashed between the two co-

operating surfaces (counterfaces). It must also provide a means to calculate the 

pressure and traction between the particle and the counterfaces if the particle is 

actually entrapped. However, prior to anything else, the model must “decide” 

whether a particle can be entrapped or not. 

 As of today, the literature lacks a detailed theoretical model of this kind, 

although there are several publications dealing with abrasive models for hard 

particles, like for example in Rabinowicz and Mutis (1965), Larsen-Badse (1968a, 

1968b), Richardson (1968), and Williams and Hyncica (1992). The effects of 

contamination particles on cooperating surfaces had been observed as early as in the 

15th century by Leonardo da Vinci. In recent years, meticulous work has been 

performed by Sayles and Ioannides to investigate the effects of contamination 

particles in the lubrication, performance and life of machine elements (Sayles 

and Ioannides, 1988). Dramatic effects have been demonstrated in many 

publications, as in Sayles (1995) and Chao et al. (1996). It has been repeatedly 

shown that debris particles can cause severe plastic deformation when over-rolled in 

concentrated contacts, the damage being in the form of either dents or 
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scratches/grooves. However, the most impressive discovery was not the surface 

damage caused directly by the particles but the damage developed later, even after 

the particles have gone, due to the presence of the surface dents left by the particles. 

These dents are areas where plastic flow has occurred. Consequently, residual 

stresses are present and active (Xu et al. (1997), Ko and Ioannides (1989)). When 

these dents are over-rolled, sharp stress peaks appear at their edges, which are 

encountered in both dry contacts (Sayles, 1995) and elastohydrodynamic contacts 

(Venner and Lubrecht, 1994). These highly stressed areas are precursors of cracks 

and result in rolling fatigue, significantly reducing the life of machine elements 

(Sayles and Ioannides, 1988). Lubrecht et al. (1992) found that residual stresses 

around dents have only a small effect on the life of the dented surfaces in the case of 

line contacts. However, it is the effect of the high local surface pressure on the 

vicinity of the debris dent shoulders as well as the sub-surface concentration of shear 

stresses that cause the problem. Webster et al. (1986) showed analytically that such 

stress concentrations could be as much as three times greater than the sub-surface 

maximum that results from a corresponding ideal Hertzian loading. Webster et al. 

(1986) also showed analytically (using the Ioannides-Harris (1985) life model) that 

“… the fatigue lives for bearings tested under 40 µm filtration are about 7 times less 

than those tested under 3 µm filtration.” Their tests involved roller bearings and the 

fatigue life reductions were associated with the surface indentations caused by the 

debris particles. 

 In the last few decades, the abrasion mechanisms have been classified in two 

categories, namely two-body abrasion and three-body abrasion. Three-body abrasion 

occurs when particles, known as third bodies, are trapped between two counterfaces 

that are in relative motion to each other (rolling, sliding or mixed rolling-sliding). In 

a three-body abrasion, the particles remain in suspension. Two-body abrasion occurs 

when the particles are embedded in one of the counterfaces and, hence, act as 

protuberances of the body they invade. In both two and three-body abrasion, the 

attacked surfaces exhibit wear marks which can vary from tumbling to ploughing, 

depending on the ratio of the film thickness over the average particle size, and on the 

relative hardness of the particles and the surfaces (see for example Dwyer-Joyce, 

1993). However, abrasive wear is associated with relatively hard particles in sliding 

contacts. It has been observed that if the two counterfaces have different hardness, 
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hard particles tend to embed the softer surface and scratch the harder (Williams and 

Hyncica (1992), Dwyer-Joyce (1993)). The wear scratches/grooves can easily be 

seen and the effects of hard particles can easily be realized. Therefore, research is 

mainly concentrated on hard contaminants. 

 However, soft and ductile particles, like for example copper, cast iron and 

low carbon steel particles, have also a role in surface wear, but because of the 

severity of the hard-particle abrasion wear, soft-particle wear remains a neglected 

part in the literature. It was only in recent years that it was made clear how soft and 

ductile particles could play an important role in surface wear of machine elements 

(Hamer et al. (1989b), Sayles et al. (1990), Dwyer-Joyce et al. (1992)). It is shown 

later in this Thesis that soft particles can cause surface wear and damage of 

equivalent severity as that caused by hard particles. The mode of surface damage 

associated with soft contaminants is of the adhesion type rather than of the abrasion 

type. The latter is more evident for softer particles than for harder. Hamer et al. 

(1989b) showed that, for purely rolling contacts, soft particles are extruded when 

compressed between the two counterfaces. The extrusion (or lateral expansion) of the 

particle is obstructed by the frictional forces between the particle and the 

counterfaces, as well as by the elastohydrodynamic pressure, especially in the central 

region of the contact, although the latter effect can vary significantly due to the 

variable fluid pressure along the periphery of the particles and for other reasons that 

are made clear later in this chapter. Consequently, high pressures can be developed 

between the particle and the counterfaces, which can even cause plastic deformations 

of the counterfaces. 

 It is also known (see for example Chao et al., 1996) that soft and ductile 

particles can be reduced to sharp platelets when compressed. These platelets are 

harder than the matrix particles due to plastic work hardening, and if they are 

involved in further compression/sliding, could cause surface damage, because of 

their increased hardness. This is more obvious in sliding contacts, where the platelets 

can shear and remove material from the surfaces in a fashion similar to that of hard 

particles but it can also happen in rolling elliptical contacts. In the latter case, such 

work-hardened platelets may cause surface spalling due to spinning inside the 

contact, owing to the Heathcote differential slip effect (see Chao et al., 1996).  

 In the present chapter, a preliminary model for the particle behaviour (motion 

and deformation) inside an elastohydrodynamic gap is developed for soft and ductile 
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particles in line contacts. The fundamental equation of particle’s motion is derived 

from the equilibrium of solid frictional and reaction forces between the particle and 

the counterfaces, as well as of fluid drag forces between the particle and the 

lubricating oil. Moreover, a criterion to test the possibility of particle entrapment or 

rejection from the contact is developed, based on the mechanical force equilibrium 

on the particle. 

 It is shown that, in sliding contacts, soft particles stick to one surface and 

slide on the other. For counterfaces of equal hardness, this adhesion-type particle 

behaviour is explained through the difference in the coefficients of friction of the two 

counterfaces (even for very small difference). For surfaces of different hardness, 

particles embed the softer surface and slide on the harder. The effects of this kind of 

behaviour are assessed in the remaining chapters of this Thesis. The experimental 

observations and theoretical predictions of other authors are all confirmed through 

the theoretical model developed in the present and the remaining chapters. Moreover, 

it is later shown that soft and ductile particles can also be responsible for local 

scuffing wear, due to high frictional heating produced during their squashing in 

concentrated, lubricated contacts. 

 

 

 

 

2.2 Geometry of a typical elastohydrodynamic contact 
 

The geometry of a typical line elastohydrodynamic contact, which is deformed due to 

elastohydrodynamic pressures, can be found by applying a Hertzian pressure 

between two cylinders, representing the two counterfaces at the vicinity of the 

contact (see for example Cameron, 1966). The former analysis was part of Grubin’s 

model of 1949 (see Cameron, 1966) and predicts a flat film in the central (Hertzian) 

zone of the contact. The equations giving the film thickness in the contact are as 

follows: 
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where hc is the central film thickness of the contact, w is the load per unit length of 

the contact, b is the Hertzian contact semi-width and E is the effective modulus of 

elasticity. The central film thickness hc can be calculated from any available semi-

empirical formula, as the one proposed by Pan and Hamrock (1989). The Hertzian 

contact semi-width is given by the following equation: 

 

E

Rw
b

⋅

⋅⋅
=

π

eq8
                                                                                                       (2.2) 

 

where Req is the effective radius of curvature of the contact 
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whereas R1 and R2 are the radii of curvature of surfaces 1 and 2 respectively. The 

effective modulus of elasticity E is defined as: 
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where E1, E2 and ν1, ν2 are the moduli of elasticity and Poisson ratios of counterfaces 

1 and 2 respectively. 

 The model of the deformed contact used in this study (figure 2.1) assumes 

that the counterfaces are parallel in the Hertzian zone of the contact. The sketch in 

figure 2.1 is not to scale and has been greatly exaggerated in the vertical direction 

(thickness). 
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Figure 2.1 Geometry of line-elastohydrodynamic-contact model (not to scale). 

 

 

According to the theory of Elastohydrodynamic Lubrication, there must be a film 

constriction at the exit of the Hertzian zone (entrance to the outlet zone) of the 

contact, which results in the well-known pressure spike. The explanation for this 

comes from the fact that the pressure gradient must be negative at the end of the 

Hertzian zone, which, when applied to the Reynolds’ equation, demands that 

h(x→b-) < hc (see for example Johnson, 1985, p. 337). Therefore, the minimum film 

thickness is less than the central film thickness hc. Numerical solutions have shown 

that the difference between the minimum film thickness and the central film 

thickness is very small indeed and the difference becomes smaller in heavily loaded 

conjunctions, where the magnitude of the pressure spike is diminished and the 

pressure distribution resembles closely the one given by Hertz for dry contacts 

(Hamrock, 1994). 

 On the other hand, there might exist a slight surface curvature inside the 

Hertzian zone of the contact (the two counterfaces still being parallel), resulting from 

the fact that bodies 1 and 2 might have slightly different material mechanical 

properties. This curvature, if existing, is anyway small enough to be ignored and is 

considered of secondary importance in the present study, as it is not expected to 

affect the motion of the particle.
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 Following the previous observations, it is now clear why the model assumes a 

constant film thickness throughout the Hertzian zone of the contact, as is shown in 

figure 2.1. Moreover, in the presence of a solid particle in the elastohydrodynamic 

gap, surface deformations in the vicinity of the particle are governed by the particle 

itself and not by the lubricant, provided of course that the particle is thicker than the 

central film thickness. This means that as the particle approaches the exit of the 

Hertzian zone, where the film constriction exists, surface deformations in the vicinity 

of the particle are almost solely a result of the pressure developed between the 

particle and the counterfaces. This further means that the particle’s presence cancels 

the film constriction due to the elastohydrodynamic lubrication mechanism and 

imposes its own constraints, as this can be found by solving the Contact Mechanics 

problem of the compression and shearing of a solid object between two parallel 

surfaces. 

 Having established a satisfactory model of the contact, the various forces 

affecting the particle’s motion can now be determined. However, before that, a 

criterion of the likelihood of particle entrapment must be developed, in order to 

decide if a particular particle can indeed become entrapped and pass through the 

elastohydrodynamic gap. 

 

 

 

 

2.3 Criterion to evaluate the likelihood of particle’s entrapment 
 

Large particles are more difficult to become entrapped and pass through the 

elastohydrodynamic gap because of the reaction forces between a particle and the 

counterfaces in the inlet zone of the contact (figure 2.1). Assuming the particle is 

spherical, there is an upper limit in its diameter, beyond which the particle cannot 

enter the contact without first being plastically deformed. This “critical” diameter 

can be found from the force equilibrium on the particle. At this stage, only 

mechanical forces, owing to the particle’s interaction with the counterfaces, are taken 

into account, whereas fluid forces on the particle are omitted. It will actually be 

shown later in this chapter that fluid forces on the particle are negligible when 

compared with solid frictional forces, which arise from the compression and shearing 
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of the particle between the counterfaces. Therefore, the omission of fluid forces at 

this stage is justified. 

 Calculation of the “critical diameter” is done in two ways: 

(a) by an approximate but fast method, resulting in minimal CPU (Central 

Processing Unit) times when programmed for a computer, and 

(b) by an accurate but more time-consuming (in terms of CPU time) method. 

 

It must be mentioned that both methods cover the cases of pure rolling and rolling-

sliding contacts simultaneously. 
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2.3.1 Criterion for particle’s entrapment - approximate method 
 

A simplified analysis can be set up if it is assumed that the counterfaces have a 

constant radius of curvature, equal to their radius of curvature at the nominal point of 

“contact” (x = 0) when being undeformed. Figure 2.2 shows a particle that has just 

touched both counterfaces.  

 

 

Figure 2.2 A particle at the equilibrium stage. 
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The interaction between the particle and the counterfaces is expressed by the normal 

(reaction) forces
~

2
~

1  , NN , and the frictional forces 
~
2

~
1  ,TT . It is assumed, without loss 

of generality, that the tangential speeds of surfaces 1 and 2 satisfy the following 

constraints: u1 ≥ u2 ≠ 0. 

 From the force equilibrium on the particle in directions x and z, the following 

algebraic equations are derived: 

 

( ) ( ) ( ) ( ) 0sinsincoscos 22112211 =⋅−⋅−⋅±⋅ αααα NNTT                                        (2.5) 

 

( ) ( ) ( ) ( ) 0coscossinsin 22112211 =⋅+⋅−⋅±⋅− αααα NNTT                                     (2.6) 

 

The plus signs in front of the T2 terms in equations (2.5) and (2.6) hold for the case 

presented in figure 2.2, whereas the minus signs hold in the case where the vector 
~
2T  

has the opposite direction, which occurs immediately after the particle is pinched. 

The implications of the latter are discussed later in this study. 

 In both the cases of rolling-sliding and of pure rolling (zero sliding) of the 

counterfaces, the friction forces are given by the following equations: 

 

222111      ,     NTNT ⋅=⋅= µµ                                                                                 (2.7) 

 

where µ1 and µ2 are the coefficients of kinetic (sliding) friction between the particle 

and surfaces 1 and 2 respectively. Using equations (2.7), equations (2.5) and (2.6) 

yield: 
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For the system of equations (2.8) to have non-trivial solutions, its determinant has to 

be equal to zero. Thus: 
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Equation (2.9) finally gives: 
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where the upper sign holds during the particle equilibrium stage and the lower sign 

holds immediately after the particle starts entering the gap, provided that there is 

sliding in the contact (u1 ≠ u2). The case that is related with the use of the upper signs 

in equation (2.10) is important when one counterface is stationary to a fixed 

coordinate system while the other is moving. In the latter case, immediately after the 

particle passes the equilibrium point, the frictional force on the stationary surface 

reduces the particle’s chance of getting deeper in the gap, because it changes 

direction and points towards the inlet zone of the contact. Depending on the 

particular case, the particle could then be temporarily expelled from the contact. 

However, owing to its compression at the equilibrium point, the particle may be 

slightly plastically deformed and hence may become thinner. In the latter case, the 

next time the particle is pinched, it will be deeper inside the gap. This behaviour may 

be repeated until the particle, owing to this “micro-forging” process, becomes thin 

enough to enter deep inside the gap and become utterly trapped. On the other hand, if 

both counterfaces are moving in reference to a space-fixed coordinate system (u1 ≠ 0 

and u2 ≠ 0), the overcoming of the equilibrium point by the particle results in the 

particle starting to move towards the centre of the contact, with a minimum speed 

equal to the minimum of the two tangential speeds u1 and u2. The latter is a result of 

both counterfaces moving towards the centre of the contact (figure 2.2) and the fact 

that the particle is trapped between them, although this is not a general conclusion 

because fluid forces on the particle must also be taken into account, as is done later 

in this chapter. 

 Using figure (2.2), angles α1 and α2 must satisfy the following equations: 
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Finally, using equation (2.10): 
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 For the spherical particle to be in touch (undeformed) with surfaces 1 and 2, 

the following equations must hold: 
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where D is the diameter of the undeformed particle. The previous equations are 

easily derived from the configuration of figure 2.2. Equations (2.13) form a non-

linear system. Initially, the diameter D is considered significantly smaller than the 

radius R2 and, thus, the term involving D in the lower of equations (2.13) is omitted 

in order to obtain an approximate value for zp. In the following step, the system is 

solved by applying the method of bisection. An optimized under-relaxation technique 

accelerates significantly the convergence to the final solution. Using a modern 

personal computer, the algorithm claims an infinitesimal CPU time. 

 In both cases of pure rolling and rolling-sliding of the contact, the direction of 

force 
~
2T  is as shown in figure 2.2, because it is assumed that, at the equilibrium 

stage, the particle stays fixed in space and simply rotates around its geometrical 

centre. Immediately after the particle is first pinched and starts entering the gap, the 

direction of vector 
~
2T  is reversed (becomes opposite than in figure 2.2). This may 

cause temporary rejection of the particle from the contact. In the latter case, there are 

two options.
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(a) The particle is hard enough to retain its shape under the action of the normal and 

frictional forces. This means that after being expelled, the particle will start a new 

journey in the lubricant flow, in the inlet zone of the contact, at a starting distance 

x < xp (note that xp < 0). In such a case, the particle may be expelled many times 

in succession, and the risk of poor lubrication of the contact starts becoming 

visible, considering that the particle stands as an obstruction in the replenishment 

of the contact with fresh oil. In extreme cases this behaviour may lead to oil 

starvation and scuffing, especially when other particles start accumulating around 

the rejected particle. 

(b) The particle is soft enough to be plastically deformed under the action of all 

forces. Normal forces 
~

1N  and 
~

2N  will reduce particle’s thickness (dimension 

along the z-direction in figure 2.2), thus giving it the opportunity to enter deeper 

inside the gap and to become finally entrapped. Depending on the local 

conditions around the particle, this “micro-forging” process may take enough 

time as to cause oil starvation, by giving other particles, which are being 

obstructed by the aforementioned particle, time to accumulate in the inlet zone. 

 

 

 

 

2.3.2 Criterion for particle’s entrapment – accurate method 
 

The assumption of constant radii of curvature of the counterfaces, used in sub-section 

2.3.1, is removed here and the exact geometry of the deformed contact is used 

instead, as it is described by equations (2.1). The analysis of sub-section 2.3.1 up to 

equation (2.10) is also used here. Figure 2.3 shows the geometry of the deformed 

gap. Equations (2.11) and (2.13) are replaced here by equations (2.14) and (2.15). 
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If α1
 is the angle between line AC and axis z, then: 
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Similarly, if α2 is the angle between line BC and axis z, then: 
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Figure 2.3 Geometry of an elastohydrodynamic gap. 

 

 

Equations (2.10) and (2.14)-(2.17) constitute a non-linear system. This system is 

solved iteratively by a trial-and-error method, using an initial guess D = 0. This 

method has the disadvantage of being slow in comparison with the approximate 

method of sub-section 2.3.1, but this can be compensated by using a faster computer 

(the CPU time needed is generally less than 1 min, using a modern PC). 
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2.3.3 Comparison of the two methods 
 

Despite the assumption of rigid counterfaces, the approximate method gives results 

which are less than 5 % away of those obtained by using the accurate method, for the 

range of typical values studied. Figure 2.4a shows the critical particle diameter for 

entrapment in rolling/sliding contact, using both methods, for a typical range of 

operational parameters. 
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Figure 2.4a Critical particle diameter for a rolling/sliding contact, applicable only 

             when both counterfaces are moving in the same direction. (The 

                        counterfaces have equal radii of curvature. Central film thickness: 

                        from 0.38 µm for the 5 mm radius of curvature up to 0.68 µm for 

  the 20 mm one.) 
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It is noted that the values given in figure 2.4a have been calculated by applying 

equation (2.10) with the upper signs (see equation (2.10) and the explanations that 

follow it). Therefore, the use of figure 2.4a is useful either for purely rolling contacts 

or for contacts where both counterfaces are moving towards the centre of the contact. 

If the lower signs in equation (2.10) are used or, in other words, if the sliding of the 

contact is taken into account, the values of the critical diameter in figure 2.4a become 

significantly lower. This is shown in figure 2.4b. 
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Figure 2.4b Critical particle diameter for a rolling/sliding contact, applicable only 

  when one counterface is stationary or when the counterfaces are  

  moving in opposite directions. (The counterfaces have equal radii 

  of curvature. Central film thickness: from 0.38 µm for the 5 mm  

  radius of curvature up to 0.68 µm for the 20 mm one.) 
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However, figure 2.4b is applicable only when one counterface is stationary (see the 

explanations below equation (2.10)). It may seem surprising that figure 2.4b gives 

very low values for the critical particle diameter, although this effect was particularly 

noted in the experimental work of Cusano and Sliney (1982), and Wan and Spikes 

(1986 and 1988). It has also been extensively demonstrated in the first chapter of this 

Thesis (see figure 1.53 referring to “High Sliding”). Nevertheless, it must be made 

clear that the calculations involved perfectly spherical and rigid particles. In reality, 

neither of the previous two assumptions is true. Particle plasticity allows particles to 

be compressed plastically and enter deeper inside an elastohydrodynamic gap. Of 

course, if the particles are brittle, they may well break down to smaller fragments, 

which then may readily enter the contact zone. On the other hand, a sphere has no 

edge. It is therefore much more difficult to be dragged or grabbed as compared to an 

irregularly shaped object. Moreover, the analysis at this stage omits any fluid-force 

effects on the particle. It is shown later in this chapter that fluid forces may have an 

effect on particle’s motion at the stage of particle’s pinching between the 

counterfaces. For all the previous reasons, figure 2.4b must be used only as an 

indicative and not as a strictly accurate guide. Assuming that the counterfaces have 

equal friction coefficients, and that one of the counterfaces is stationary (is not 

moving towards the centre of the contact), then the analysis of sub-section 2.3.2 

gives unsurprisingly that the critical particle diameter is equal to the central film 

thickness of the contact (the minimum gap). Finally, the results are very much 

dependent on the difference of the friction coefficients (µ1 – µ2). 

 

 

 

 

2.4 Shape of a deformed soft and ductile particle 
 

The model of the present chapter refers to spherical ductile particles, which are much 

softer than the counterfaces. As is shown later in this Thesis, stress calculations are 

normally done for particles with hardness lower than 50 % of the minimum hardness 

of the two counterfaces. Moreover, the counterfaces can be considered as nearly 

parallel, as is explained in section 2.2. Therefore, a particle that has started 

deforming and being squashed inside the elastohydrodynamic gap can be simulated 
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by a short cylinder (disk) pressed between two parallel, flat surfaces, which generally 

have a relative sliding and normal-approaching velocity to each other. Experimental 

support for this behaviour can be found in Dwyer-Joyce (1993) and Wan and Spikes 

(1988), in the form of photographs showing deformed copper particles. High sliding 

conditions are expected to produce particle shapes which are elliptical rather than 

circular, but this is not going to significantly affect the results of this Thesis, namely 

the magnitude of stresses and flash temperatures, as is shown later. 

 Summarizing the model, the particle is initially considered spherical. This is 

done for two reasons. 

(a) Simplicity of reference; only one number is needed to describe particle’s 

dimensions, namely its diameter. 

(b) Although a particle can have an infinite variety of shapes, smooth shapes are 

more common for soft and ductile particles, owing to the way they are created. 

On the other hand, there must be a starting point in the analysis, and the 

assumption of an initially spherical particle is not unrealistic. It is interesting to 

report that Leng and Davies (1988) performed a ferrographic examination of 

unused lubricants for Diesel engines and found that the majority of metallic 

debris were iron-based and of spherical shape, with diameters ranging from a few 

microns to about 20 µm. Kjer (1981), searching for particles in new motor oils, 

was surprised to find a great number of spherical particles with diameters ranging 

from a few microns to about 30 µm, but the majority of those were non-metallic. 

It is noted that spherical particles are often found to be associated with fatigue. 

They are thought to be the result of debris being rolled around within a spalling 

crack. Their generation is believed to be typical of spalling fatigue (see Tallian, 

1992, page 176, plate No: 10:31 for a good description with photographs). 

 

 After its entrapment, the particle starts forming a disk-shaped object, named 

here the “equivalent cylindrical particle”, and its thickness is progressively reduced 

as it enters deeper inside the gap. This model can be viewed simplified in figure 2.5. 
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Figure 2.5 Simplified model of a deforming soft ductile particle. 
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2.5 Fluid force on the particle 
 

A trapped particle that is “flowing” towards the elastohydrodynamic gap is under the 

influence of the lubricant that surrounds it. This influence is expressed in two ways. 

(a) Owing to the variable elastohydrodynamic pressure in the contact, different 

points on the circumference of the particle are subjected to different static 

pressure. Integration around particle’s circumference can reveal the magnitude 

and direction of the resultant static-pressure force on the particle. 

(b) The particle occupies its own space in the lubricant flow, thus disturbing the flow 

by its presence. The lubricant then reacts by applying a “dynamic-pressure” force 

on the particle (drag force). 

The previous two fluid forces are modelled in the following two sub-sections. 

 

 

 

 

2.5.1 Static-pressure fluid force on the particle 
 

After being trapped, the particle starts moving along the x-direction (figure 2.2), 

being flattened as it enters the gap. An intermediate stage of its deformation is 

presented in figure 2.6. The radius R of the deformed (disk shaped) particle is 

calculated using the principle of conservation of volume: 

 

σπ VhR =⋅⋅
2                                                                                                         (2.18) 

 

where Vσ is the volume of the initially spherical particle, hence: 
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Using equation (2.18), radius R is: 
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where the thickness h refers to the position of the particle’s geometrical centre and is 

calculated from equation (2.1). 
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Figure 2.6 Calculation of the “static-pressure” fluid force on the particle. 

 

 

 Dividing the particle into elemental sectors as shown in figure 2.6, the 

elemental “static pressure” fluid force on a sector, owing to the fluid static pressure 

p, is 

 

ϕdd stat ⋅⋅⋅= RhpF                                                                                                (2.21) 

 

and the component in the x-direction is 

 

( ) ϕϕ dsind xstat, ⋅⋅⋅⋅= RhpF                                                                                  (2.22) 
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Angle ϕ is measured clockwise, as is shown in figure 2.6. Integration along the 

periphery of the particle yields the overall fluid force due to the static-fluid-pressure 

gradient: 
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where ε is a “flow perturbation” parameter, used here to simulate the disturbance of 

the fluid flow caused by the presence of the particle. It is obvious that near the 

particle, lubricant streamlines are not the same as in the case of the unperturbed flow. 

Generally ε depends on location – more precisely on the angle ϕ, but in any case it 

can be chosen in the region 

 

( ) 10 << ϕε                                                                                                            (2.24) 

 

Theoretically, ε could be slightly outside the previous region, but this is very difficult 

to be precisely calculated because of the uncertainty of the fluid conditions around 

the particle, especially at such small scale. In the proposed model, ε  = 0 represents 

the hypothetical case where the right-hand side of the particle according to figure 2.6 

(the particle moves from right to left in the figure) is under zero lubricant static 

pressure. Similarly, ε = 1 represents the case where the lubricant’s pressure along the 

periphery of the right-hand side of the particle (figure 2.6) is the one predicted by the 

Elastohydrodynamic Theory, as if there were no obstacle (particle) present. 

 With a particle present inside the elastohydrodynamic gap, some of the 

contact’s load will be carried by the particle. Therefore, the elastohydrodynamic 

pressure around the particle is expected to be reduced, which implies a partial local 

film collapse. The proposed model addresses the worst case scenario, where the 

elastohydrodynamic pressure has its maximum value, as predicted by the classical 

theory. If the particle could overcome (as is shown later) the full elastohydrodynamic 

pressure “obstacle” and could move into the gap, then the same would happen in the 

more realistic case where the elastohydrodynamic pressure is lower than its 

maximum theoretical strength, due to the presence of the particle.
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2.5.2 Dynamic-pressure fluid force on the particle 
 

The particle occupies some space in the lubricant and thus disturbs the flow by its 

presence. Because of the differing local velocity of the lubricant relatively to the 

particle, a fluid drag force is exerted on the particle, which, in Fluid Mechanics 

terminology, is known as a force due to “dynamic pressure”. This force can be 

calculated from the following equation: 

 

2
dyn 2

UACF D ⋅⋅⋅=
ρ

                                                                                             (2.25) 

 

where CD is the drag coefficient, ρ is the density of the lubricant, U is the (macro) 

speed of the lubricant relatively to the particle and A is the facial surface of the 

deformed particle (disk) 

 

2RA ⋅= π                                                                                                               (2.26) 

 

The lubricant in the high-pressure area of the contact (Hertzian zone) is assumed to 

remain in the liquid state, so that equation (2.25) is directly applicable. It is however 

speculated that, in heavily loaded contacts, the lubricant may behave like a soft solid, 

although lubricant’s behaviour at very high pressure is not yet well understood and 

modelled. If there is partial solidification of the lubricant, a more simple equation can 

be used in place of equation (2.25), as for example: Fdyn = CD·ρ·U·A.  Because of the 

ambiguity of the actual state of the lubricant in the high pressure area of the contact, 

it is difficult to estimate the exact value of the drag coefficient CD , which depends on 

the position of the shear plane in the lubricant and on the density of its solidified part. 

Nevertheless, in view of the extremely small thickness of the particle in the high 

pressure region (Hertzian zone), it is not expected that a partly solidified film will be 

a serious obstruction in the sliding of the particle, especially when the high sliding 

frictional forces between the particle and the counterfaces are taken into account, as 

is shown in the example at the end of this chapter. 

 The Reynolds number of the local fluid flow around the particle (or particle 

Reynolds number) is defined as 
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η
ρ UR ⋅⋅⋅

≡
2

Rep                                                                                                   (2.27) 

 

where η is the (variable) dynamic viscosity of the lubricant, known also as absolute 

viscosity. It is found that the particle Reynolds number is low, usually less than 1. 

Therefore, the local flow is creeping. For a thin circular disk, which is aligned in 

parallel to the streamlines of a creeping flow, the drag coefficient CD is evaluated by 

the following equation (Munson et al. (1990), Table 9.4, page 611): 

 

pRe

6.13
=DC                                                                                                              (2.28) 

 

Equation (2.28) is not fully applicable in this case because the upper and lower faces 

of the particle are in contact with surfaces 1 and 2 respectively. Nevertheless, it is 

used here to obtain an estimation of the magnitude of the dynamic-pressure fluid 

force on the particle. As is shown later in the example quoted in this chapter, the 

dynamic-pressure fluid force on the particle is very weak compared to the sliding 

frictional forces, having practically no effect on the motion of the particle. 

 Using equations (2.26)-(2.28), equation (2.25) gives 

 

URF ⋅⋅⋅⋅= ηπ4.3dyn                                                                                            (2.29) 

 

The most widely used formula in the literature, which gives the dynamic viscosity as 

a function of pressure and temperature, is the one proposed by Roelands (1963, 

1966), which in SI units reads as: 
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where η0 is the dynamic viscosity at environmental conditions, Z1 and S0 are the 

viscosity-pressure and viscosity-temperature coefficients respectively, θ0 is the 
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environmental temperature, and θ is the temperature of the lubricant (both 

temperatures in degrees Kelvin). 

 Finally, the density of the lubricant is also a function of pressure and 

temperature. For mineral oils, a widely used formula, which originated from Dowson 

and Higginson (1966) for the density-pressure relationship and later extended (see 

for example Yang and Wen, 1993) to include the temperature factor, is the following 

(valid for SI units only): 
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where ρ0 is the density of the lubricant at environmental conditions. For a given 

change of pressure and temperature, the corresponding change of the density is much 

lower than that of the dynamic viscosity. Moreover, thermal effects influence the 

viscosity much more than the density. For example, for p = 1 GPa, θ = 150 °C and 

θ0 = 20 °C, the contribution of the pressure to the density increase is +22 %, whereas 

the contribution of the temperature is –8 %, according to equation (2.31). As far as 

the dynamic viscosity is concerned, if the temperature factor were omitted, the 

calculated viscosity would be 30,000 times higher (using η0 = 0.08 Pa·s, Z1 = 0.6 and 

S0 = 1.1, which are typical values for lubricating oils) than if both pressure and 

temperature effects were accounted for! 

 Alternatives to the relation (2.31) have been proposed by other researchers, 

who attempted to overcome the increasing inaccuracy of equation (2.31) for higher 

pressures (usually for pressures higher than 0.5 GPa). Hamrock (1994) suggested a 

complicated model, which takes into account the possibility of film solidification. 

More recently, Wong et al. (1996) proposed a model, which originated from the 

well-known van der Waals equation for perfect gases, and showed that their model 

agrees well with experimental values over a wide range of pressures (their tests were 

restricted to 1.2 GPa). However, equation (2.31) will be used in the present analysis, 

were the pressures (in the examples used) are not very high. 

 Thermal elastohydrodynamic solutions (see for example Yang and Wen, 

1993) for line contacts have shown that the temperature variation across the film 

(direction of film thickness) is rapid. Accordingly, viscosity variations across the 
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film are rapid, too. Therefore, the effective viscosity used in the calculation of the 

Reynolds number (equation (2.27)) must be an intermediate value of the highest 

viscosity (environmental temperature) and lowest viscosity (maximum flash 

temperature for position x) in the contact. By omitting the thermal factor in the 

calculation of the dynamic viscosity, we allow for the maximum possible viscosity, 

under the specific pressure in the contact. This means that, since the dynamic-

pressure fluid force Fdyn is proportional to the dynamic viscosity (equation (2.29)) 

and varies relatively insignificantly due to the other factors (R and U) as can easily 

be proved, the omission of the thermal effects on the dynamic viscosity results in the 

maximum-possible calculated Fdyn. It is actually shown in the example presented 

later in this chapter that even this maximum force Fdyn is still significantly lower than 

the solid frictional forces between the particle and the counterfaces, and that the solid 

frictional forces rule the motion of the particle along most of the particle’s trajectory. 

Moreover, and because of the latter reason, the non-Newtonian behaviour of some 

lubricants at high shear rates (where their viscosity is also affected by the shear rate) 

is considered of secondary importance and of limited value in the present study. 

 Finally, a note must be made on the magnitude of speed U (equation (2.25)). 

This refers to a macro-speed of the lubricant relatively to the particle, in the area 

around the particle and depends on the local conditions of the lubricant, which, for 

high pressures - temperatures and shear rates, are not accurately known. Therefore, a 

rather ambiguous choice has to be made. For example, it is rather obvious to assume 

that 0 < U < u1 – u2. The x-speed profile of the lubricant around the particle depends 

on the position of lubricant’s shearing plane. If it is assumed that this speed profile is 

linear, then a suitable choice for speed U is the sliding semi-speed of the contact: 

U = (u1 – u2)/2. However, this choice is not crucial because, as is shown later in this 

chapter, the dynamic-pressure fluid force on the particle, which is proportional to 

speed U, is significantly lower than the solid frictional forces and, hence, is not 

affecting essentially the motion of the particle.
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2.6 Solid pressure on the particle – preliminary model 
 

The particle is plastically deformed as it enters the elastohydrodynamic gap. 

According to the model of section 2.4, it is expected to become a thin flat disk with a 

more-or-less cylindrical shape, especially if the sliding speed of the contact is low. 

The pressure between the particle and the counterfaces can be found by considering 

the particle as a small mass in a completely plastic state. A rather simple but 

effective model has been presented by Hamer et al. (1989), which takes into account 

surface deformations due to the pressure between the particle and the counterfaces. 

That model will be adopted here as a first approximation. Due to the softness of the 

particles considered in this Thesis, surface deformations are omitted at this stage and 

the counterfaces are considered as rigid. A more thorough and extensive model, 

including surface deformations and lubricant pressure on the particle, is developed in 

the last chapter of this Thesis. 

 Following the analysis of Hamer et al. (1989), the solid pressure on the 

particle is calculated from the following equations: 

 

( )

( ) 









≥⋅−⋅⋅+=

<⋅⋅=
−⋅⋅

p
pp

s

p

2

ps

 if ,     
2

 if ,                  e

kprR
h

kk
p

kpYp

fs
f

f
h

rRf

µ
µ

µ
µ

                                                       (2.32) 

 

where Yp is the yield stress in uniaxial tension of the material of the particle, kp is the 

yield stress in simple shear of the particle’s material (taken here as kp = Yp/ 3  

according to the von Mises yield criterion, which is more suitable for ductile 

materials, as in the present case), Rs is the radius of the stick region between the 

particle and a counterface, if any, and µf is the friction coefficient between a particle 

and a counterface. The friction coefficient µf may be slightly different for each 

counterface. The latter means that the upper and the lower base of the particle will 

have slightly different radii. These radii (which are almost equal to each other) are 

accurately calculated in the model, although only one radius R is reported, which is 

the average of the two aforementioned radii. 
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 Equations (2.32) constitute a version of the “friction hill” theory, which is 

basic textbook material in the Theory of Plasticity. In any case, equations (2.32) are a 

good starting point for the following two reasons. 

(a) The model is for ductile particles, which are much softer than the counterfaces, 

usually 50 % to 90 % softer. Hence, the counterfaces can be considered as rigid 

for a first approximation. 

(b) The relative sliding of the counterfaces does actually little to upset the circularity 

of the deforming particle, especially in the all important Hertzian zone of the 

contact, due to the extremely small thickness of the elastohydrodynamic gap and 

the nearly parallel, flat counterfaces. The circularity of plastically deformed 

particles has been experimentally shown in Wan and Spikes (1988), in the case of 

copper particles. For high sliding speed of the contact, this circularity may be 

distorted and the particle may adopt a more-or-less elliptical shape, being 

elongated along the direction of sliding of the contact. 

 

 The particle’s thickness is assumed to remain constant throughout the area of 

the particle, owing to the nearly parallel counterfaces. For a typical surface dent 

caused by a soft particle, with a depth of around 1 µm and a radius of around 

100 µm, the average dent slope is easily calculated to be less than 1°. This slope is 

sufficiently small to be ignored. 

 If the counterfaces are harder than the particle, the pressure on the particle 

cannot exceed the maximum hardness of the counterfaces. Forging experiments with 

disks pressed between flat platens have shown that the assumption of rigid platens is 

not unreasonable if the hardness of the disks is much less than 90 % of the hardness 

of the platens, whereas above this threshold, the assumption of platens’ rigidity is no 

longer valid. Therefore, and in view of the previous observation, particles used 

throughout this study are assumed at least 10 % softer than the counterfaces. 
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2.7 Motion of the particle 

In this section, the equation of particle’s motion is developed, based on all forces 

acting on the particle, namely solid frictional forces between the particle and the 

counterfaces, fluid forces and particle’s inertia. The instantaneous motion of the 

particle is described in a local Cartesian coordinate system OX′Z, as is shown in 

figure 2.7. The origin O of system OX′Z is the centre of contact of the particle with 

body 2. In general, the particle has a velocity 
~

1pV  relatively to surface 1 and a 

velocity 
~

2pV  relatively to surface 2. Equivalently, surfaces 1 and 2 have velocities 

~
p1V  and 

~
p2V  respectively, relatively to the particle (figure 2.7).  
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Figure 2.7 Forces acting on the particle and other notation. 
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Using figure 2.7, the force equilibrium on the particle is written as follows: 

 

( ) ( ) ( ) ( ) XmFNXTT ′⋅=⋅−+⋅−′⋅−+⋅ &&
2fluid2112211 cossinsgncos ϕϕϕϕϕ             (2.33) 

 

where m is the mass of the particle and X′ is the instantaneous displacement of 

particle’s geometrical centre (centre of the particle disk) relatively to surface 2. 

 The sign function sgn(X′) is defined as follows: 
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This term is introduced in equation (2.33) because the direction of vector 
~
2T  depends 

on the direction of the motion of the particle relatively to surface 2 (this direction is 

not known beforehand). 

 The distance between the counterfaces during the motion of the particle is 

equal to the lubricant film thickness h(x) (figure 2.5), where x is the distance of the 

centre of particle’s disk from the centre of the contact (x = 0, in other words the 

centre of the Hertzian zone or the “nominal point of contact”). The idealized 

cylindrical particle collapses progressively (figure 2.5, from right hand to left hand) 

as it moves towards the centre of the contact. It must be noted that the curvature of 

the counterfaces in the inlet zone of the contact is actually taken into account in 

deriving the force equilibrium on the particle (see equation (2.33)). 

 Angles ϕ1 and ϕ2 are easily calculated using figure 2.7 and equation (2.1): 

 

( )




 −


⋅⋅⋅

−⋅⋅= 1
14

arctan
22

b

x

bE

w

i

i
i π

νϕ      , i = 1, 2                                              (2.35) 

 

 Normal forces N1 and N2 (figure 2.7) are calculated from the solid-pressure 

distribution on the particle (N1 = N2 according to the model of figure 2.5): 
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Frictional forces T1 and T2 are related to the normal forces N1 and N2 respectively 

through the following equations: 

 

iii NT ⋅= µ      , i = 1, 2                                                                                          (2.37) 

 

Each one of equations (2.37) holds as long as the particle is in motion relatively to 

the corresponding counterface. If the particle is stationary to one counterface and 

slides on the other, the traction force between the particle and the counterface it 

sticks to is calculated from equation (2.33), with the right-hand side of that equation 

being equal to zero. For example, if the particle sticks to surface 1 and slides on 

surface 2, then: 
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Similarly, if the particle sticks to surface 2 and slides on surface 1, then T1 = µ1·N1 

and force T2 is calculated from an equation similar to equation (2.33), written for a 

coordinate system associated with surface 1, as OX′Z is put on surface 2. 

 The overall fluid force on the particle consists of the static and the dynamic-

pressure fluid force components, according to the analysis of sub-sections 2.5.1 and 

2.5.2, respectively. Combining these components, the overall fluid force on the 

particle, directed along the x-axis (figure 2.7) is: 

 

dynstatfluid FFF ±=                                                                                                   (2.39) 

 

Since the characteristic speed U of the lubricant around the particle may change 

direction during the motion of the particle, both the plus and minus signs were used 

in writing equation (2.39). 

 All terms of the equation of particle’s motion (2.33) are at this point clearly 

defined. Before attempting to obtain a solution, a relation between distances x and X′ 

must be found. Using figures 2.1 and 2.7, the following equation is derived: 
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( ) ( ) 022 cos
=

+⋅⋅+′= txtuXx ϕ                                                                               (2.40) 

 

where t represents time elapsed since the particle was first pinched. However, 

according to equation (2.35), the term cos(ϕ2) in equation (2.40) is a non-linear 

function of the variable x. In order to avoid this complexity, the term cos(ϕ2) is 

linearized by expanding into a Taylor series and keeping only first-order terms: 

 

( ) ( )xbbc −⋅⋅+≅ 02 1cosϕ                                                                                     (2.41) 

 

where c0 is a constant, defined as 
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Using equation (2.41), equation (2.40) gives: 
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When ϕ2 = 0 (in the Hertzian zone), equation (2.40) can be used directly in the place 

of the approximation (2.43). 

 The equation of motion (2.33) is now discretized with a classical, second-

order accuracy, finite difference scheme: 
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  (2.44) 

 

where ∆t is the time step. Equation (2.44) is applicable only if the particle is in 

motion relatively to both counterfaces; otherwise, the particle sticks to one 

counterface and slides on the other. In the latter case, particle’s motion and velocity 

are obviously known. 

 The initial conditions that accompany equation (2.44) are as follows: 

(a) At t = 0 (k=1): X1′ = 0. 

(b) At t = 0: Vp2 = c  ⇒ (X2′ – X1′)/∆t ≅ c ⇒ X2′ ≅ c·∆t (using condition (a)). 

Assuming that, before its entrapment, the particle was carried by surface 1, then 

c = V12/cos(ϕ1 + ϕ2)t=0 , where V12 = u1 – u2 is the sliding speed of the contact. If 

it is assumed that the particle was carried by surface 2 prior to its entrapment, 

then c = 0. An intermediate value for c can also be used, thinking that the particle 

was carried by the lubricant. 

(c) At t = 0: h(xp) ≅ D. This means that the separation of the counterfaces at the point 

where the particle is first pinched is approximately equal to the particle’s 

diameter (the particle is considered spherical prior to its plastic deformation). 

This assumption has been checked through the proposed model and found fully 

justified (up to an accuracy of several decimal digits). 

 

 It is now straightforward to calculate the instantaneous speeds Vp2 and V1p. 

They are as follows: 
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( ) 12212p1 cos VVV p −+⋅= ϕϕ                                                                                   (2.46) 

 

The limiting shear stress between the particle and a counterface is the particle’s yield 

stress in simple shear (kp). If this limit is exceeded, the particle sticks to the relevant 

counterface. Therefore, the following constraints must hold: 
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If the particle sticks to both counterfaces, it will be internally sheared to the point its 

thickness will be reduced, until the traction between the particle and the counterface 

with the lower friction coefficient falls below the critical limit, so that the particle 

starts sliding again. The latter case is not covered in the present work and does not 

alter the essence of the results and conclusions obtained later. 

 At this point of the analysis, there is only one step to go before achieving the 

complete description of particle’s kinematics, based on the model outlined in figure 

2.5. The remaining step is the calculation of particle’s “extrusion” speed, which is 

the speed of the lateral expansion of the particle during its plastic compression. The 

extrusion speed is simply expressed as follows: 

 

RV &=extr                                                                                                                  (2.48) 

 

where the dot above R denotes time differentiation. Using equation (2.20), the time 

derivative of radius R is given as: 
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From equation (2.1), the thickness h is a function of the following time-dependent 

variables: x, b, hc and w. Time variations of the load w are out of interest in this study 

( 0=w& ). Using the rest of the variables, the time derivative of thickness h is given as 

follows: 
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The Hertzian semi-width b and the central film thickness hc can be considered 

constant for the purposes of this study, because transient elastohydrodynamic effects 

in the contact are of secondary importance and are not affecting significantly the 

damage that the particle is likely to cause. Besides, as is shown later, the passage of 

the particle from the elastohydrodynamic gap is rapid and lasts usually less than one 

millisecond, depending on the rolling and sliding speeds of the contact. Hence, the 

time derivative of thickness h is finally given by the following equations: 
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Finally, using equations (2.49) and (2.51), equation (2.48) gives: 
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2.8 Example 
 

The analysis presented in this chapter is applied here in a detailed example. It is 

noted that this is a typical example, representative of the kind of results the proposed 

model yields. The data used in the example are shown in tables 2.1-2.3. 
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Table 2.1 

 

 

 

Table 2.2 

 

 

 

Table 2.3 

 

Particle data 

Diameter (spherical particle – undeformed) 30 µm 

Hardness 100 HV (981 MPa) 

Material density 7850 kg/m3 

Counterface data 

Radius of curvature R1 = 20 mm, R2 = 28 mm 

Hardness 800 HV (7848 MPa) 

Modulus of elasticity E1 = E2 = 207 GPa 

Poisson ratio ν1 = ν2 = 0.3 

Friction coefficient µ1 = 0.20, µ2 = 0.15 

Contact and other data 

Sliding speed V12 = 1 m/s 

Slide/roll ratio Sr = 2·V12/(u1 + u2) = 1 

Load per unit length of the contact w = 100 N/mm 

Viscosity-pressure coefficient Z1 = 0.5 

Dynamic viscosity at environmental conditions η0 = 0.1 Pa·s 

Flow perturbation parameter ε = 0.5 

Environmental temperature θ0 = 60 °C 

Speed U U = V12/2 = 0.5 m/s 

Initially the particle is carried by surface 2 (c = 0) 
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Using the present model, the following results are easily obtained, as are presented in 

table 2.4. 

 

 

      Table 2.4 

Some interesting results 

Central film thickness hc ≅ 0.7 µm 

Hertzian contact semi-width b ≅ 114 µm 

Tangential speeds of the counterfaces u1 = 1.5 m/s, u2 = 0.5 m/s 

Point where the particle is first pinched xt=0 ≅ –852 µm 

Maximum particle (cylinder – deformed) radius R ≅ 80 µm 

Mass of the particle m ≅ 0.1 µgr 

Time when the geometrical centre of the particle 

enters the Hertzian zone of the contact 0.50 ms 

Particle pass time (from x = xt=0  to  x = b) 0.70 ms 

Particle Reynolds number (equation (2.27)): 

- ignoring thermal effects due to internal 

shearing in the fluid 

- including thermal effects 

Rep = O(10-3) 

Rep = O(1) 

Maximum particle diameter to enter the contact: 

- Approximate method (see sub-section 2.3.1) 

- Accurate method (see sub-section 2.3.2) 

710 µm 

723 µm 

 

 

 The accuracy of the classical finite difference scheme used in equation (2.44) 

is adequate. Around 340 points are used along the trajectory of the particle, from the 

point it is first pinched (x = –852 µm) to the point its centre enters the outlet zone of 

the contact (x = 114 µm). This means that the spatial step along the x-axis is 

(852 + 114)/340 ≅ 3 µm. 

 According to the model developed in section 2.4 (figure 2.5), the particle 

collapses progressively as it enters deeper in the elastohydrodynamic gap, adopting 

the shape of a thin circular disk. The radius R of this disk is calculated from equation 
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(2.20) and varies during the squashing of the particle. Figure 2.8 shows the 

calculated radius R during the motion of the particle in the gap. The horizontal axis 

in the figure refers to the distance of the centre of the particle disk from the centre of 

the contact, namely from point x = 0. As can be seen, the radius changes smoothly 

from the point where the particle starts deforming plastically to the point where the 

centre of the particle enters the Hertzian zone of the contact. Inside the Hertzian 

zone, where the elastohydrodynamic gap has a constant thickness equal to hc , the 

radius R has a constant value. It must be noted that the radius which corresponds to 

x = xt=0 is less than 15 µm (the radius of the undeformed spherical particle – table 

2.1) because, as already mentioned, radius R refers to the equivalent cylinder of 

volume equal to the volume of the initially spherical particle (in other words, it is not 

the radius of the sphere). 
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Figure 2.8 Calculated particle (cylinder) radius R during deformation 

            of the particle in the elastohydrodynamic gap. 
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 The normal and the solid frictional forces on the particle are shown in figure 

2.9, where N = N1 = N2. The forces have been normalized by the maximum normal 

force Nmax, which is applied on the particle when the particle is inside the Hertzian 

zone. The figure shows that the frictional forces T1 and T2 have almost the same 

magnitude along the trajectory of the particle. This is because the fluid force on the 

particle is significantly lower than the frictional forces, especially in the Hertzian 

zone of the contact, as is shown later. 
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Figure 2.9 Normalized normal force (N/Nmax) and solid frictional forces (T1/Nmax     

     and T2/Nmax) on the particle, during passage through the contact. 

 

 

 Figure 2.10 shows how the two fluid force components (static and dynamic-

pressure fluid forces) compare with the solid frictional forces. All forces are 

presented normalized by the maximum normal force Nmax. The dynamic-pressure 

fluid force is negligible. Despite the high viscosity of the lubricant in the high-
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pressure area of the contact (Hertzian zone), the smallness of the particle results in a 

very low force. This can be realized from equation (2.29), where it is shown that the 

dynamic-pressure fluid force is proportional to particle’s (cylinder – deformed) 

radius R, which, according to figure 2.8, has a maximum value of around 80 µm. It 

must also be noted that thermal effects in the lubricant film due to internal shearing 

are ignored at this stage (see the explanations below equation (2.31)). This results in 

higher calculated values of the dynamic viscosity and, according to equation (2.29), 

higher calculated values of the dynamic-pressure fluid force Fdyn. However, as 

explained above, Fdyn is still too small in comparison to the solid frictional forces. 
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Figure 2.10 Normalized solid frictional forces (T1/Nmax and T2/Nmax) 

   and fluid forces (Fstat/Nmax and Fdyn/Nmax) on the particle,  

   during its passage through the contact. 
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 On the other hand, the static-pressure fluid force is also very low, despite the 

fact that the flow perturbation parameter ε used in the example is relatively lower 

than what should be expected. It is the feeling of the author that a value of 0.8 or 

greater for ε would be more reasonable (instead of the ε = 0.5 used in the example), 

because of the low particle Reynolds number (Rep < 1) of the flow around the 

particle (see table 2.4), which results in a laminar local flow. The latter means that 

the streamlines of the flow follow closely the circumference of the particle and 

micro-vortices are absent. The lower the value of parameter ε, the higher is the 

calculated static-pressure fluid force Fstat in the inlet zone of the contact, as can be 

realized from equation (2.23). However, the choice ε = 0.5 is deliberate to show that, 

even if Fstat is artificially allowed to be higher than normal, it is still significantly 

lower than both solid frictional forces, which, essentially, govern the motion of the 

particle inside the elastohydrodynamic gap. There is actually only one area where the 

fluid forces may have some strength over the solid frictional forces, and that is at the 

point where the particle is first pinched (x = xt=0), as is shown in figure 2.10. If the 

particle overcomes this critical point and starts moving towards the centre of the 

contact, the fluid forces have no chance of preventing it from being totally trapped 

and squashed, or, in other words, the likelihood of rejection from the contact is ruled 

out. As a matter of fact, the static-pressure fluid force may even “assist” in the 

dragging of the particle deeper inside the contact as it becomes negative (directed 

towards the centre of the contact) somewhere near the entrance to the Hertzian zone, 

as can be seen in figure 2.10. 

 Table 2.5 presents a parametric study, aimed to show the strength of the fluid 

forces in comparison to the solid frictional forces, for a wide range of working 

conditions in the contact. Some of the cases in the table are specifically chosen to 

show under which conditions the fluid forces may have a better chance of standing a 

comparison to the frictional forces (last two rows of the table). However, it must be 

clearly understood that the fluid drag forces calculated in these examples are 

artificially exaggerated to show the worst possible scenario, as has already been 

explained. In reality, the fluid forces should be lower than those used in the 

comparisons of table 2.5. The aforementioned exaggeration comes from the fact that 

thermal effects due to lubricant shearing are ignored (which results in higher 

lubricant viscosity and hence higher dynamic-pressure fluid force), and also due to 
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the lower-than-expected flow perturbation parameter used in the examples (which 

results in higher static-pressure fluid forces). 

 

 

 

      Table 2.5 

Parametric study – Comparison of fluid and solid frictional forces 

D 

[mm] 

Hp 

[HV] 

V12 

[m/s] 

µ1 µ2 ε hc 

[µm] { }





21

stat

,max
max

TT

F

[%] 

{ }
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21

dyn

,max
max

TT

F

[%] 

30 100 5.0 0.20 0.15 0.5 2.2 17.8 12.4 

30 100 1.0 0.25 0.20 0.5 0.7 14.8 0.4 

30 200 1.0 0.20 0.15 0.5 0.7 9.8 0.5 

30 100 1.0 0.20 0.15 0.5 0.7 17.8 0.5 

30 80 1.0 0.20 0.15 0.5 0.7 21.3 0.5 

30 100 0.5 0.20 0.15 0.5 0.4 17.8 0.2 

30 100 1.0 0.15 0.10 0.5 0.7 22.0 0.8 

20 100 1.0 0.20 0.15 0.5 0.7 17.6 1.2 

10 100 1.0 0.20 0.15 0.5 0.7 17.4 7.3 

10 80 5.0 0.15 0.10 0.5 2.2 –86.8 113.5 

10 80 5.0 0.15 0.10 0.5 2.2 –132.2 109.9 

Other data used in the study: 

Sr = 1, R1 = 20 mm, R2 = 28 mm 

 

 

 The particle has negligible mass. For the example studied, the mass of the 

particle is gr 1.0
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Vm  (one 

tenth of a microgram). Therefore, particle’s inertia is infinitesimal and the only 

forces left to govern particle’s motion are the solid frictional forces. This is shown 

indirectly in figure 2.11. 
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 Figure 2.11 shows the calculated speeds Vp1 and Vp2, which are the speeds of 

the particle relatively to surface 1 and 2 respectively (see equations (2.45) and (2.46), 

noting that 
~
p1

~
1p VV −= ). The extrusion speed, which is the speed of particle’s lateral 

expansion due to its compression (equations (2.48) and (2.52)), is also shown in the 

figure for comparison with the other two speeds. As is obvious in this figure, the 

particle sticks to surface 1 (Vp1 = 0) immediately after being pinched and slides on 

the other surface with a constant speed, which is equal to the sliding speed of the 

contact (Vp2 = V12). This is a direct effect of the application of the high solid 

frictional forces, in combination with the fact that all other forces are much weaker. 

As a result, the particle experiences a very high acceleration at the moment it is first 

pinched and, essentially, sticks to the surface with the higher friction coefficient 

(surface 1) almost instantaneously. 
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Figure 2.11 Relative sliding and extrusion speeds of the particle 

      during its motion inside the elastohydrodynamic gap.



§ 2.8 Example  179

As a matter of fact, the sticking of the particle to one counterface and ploughing on 

the other has been experimentally observed by, for example, Williams and Hyncica 

(1992), Dwyer-Joyce et al. (1994), Nicolson (1996, p. 127 in his Thesis), Hamilton et 

al. (1998), and many others. If the counterfaces are assumed rigid, then the particle 

will obviously stick to the counterface with the higher friction coefficient. This is 

exactly the result derived when applying the present model. On the other hand, if the 

counterfaces are considered deforming, the sticking of the particle to one counterface 

or to the other, or even to both, depends additionally on the relative hardness of the 

counterfaces and the particle, and all possibilities are open. However, for 

counterfaces with equal hardness and particles that are moderately soft, particle 

sticking to the counterface with the higher friction coefficient is the result obtained 

from the advanced model of the last chapter of this Thesis, where surface 

deformations and many other factors are taken into account. 

 Experience suggests however that in many situations, particles appear to stick 

to the faster moving surface, even if the faster moving surface may have a lower 

friction coefficient than the slower moving surface. For example, this principle is 

applied in callendering processes such as grease conditioning for low noise bearings 

and food processing. This behaviour may be attributed to the fact that, oil and 

(especially) grease or other semi-solid/liquid substances tend to stick to the faster 

moving surface. An interesting discussion can be found in Dawson and Coyle 

(1969), where the authors were unable to reassuringly explain why a small piece of 

plasticine, when introduced into the inlet of the contact between two discs, rotating at 

different speeds, was always sticking to the faster disk, even when the speeds of the 

two discs were reversed (the faster became the slower). Nevertheless, the authors 

speculated that “…since a greater length of the surface of the faster disc passed 

through the contact in any interval of time, the Plasticine stuck to the faster disc 

because there was potentially a greater area for adhesion.”. Although this 

hypothesis sounds promising, the experimental evidence collected by Dawson and 

Coyle did not provide sound proof for its validity and left some unanswered 

questions. 

 It is beyond the scope of this Thesis to explain the latter phenomenon. The 

typical soft particle of this study (100 HV) is significantly harder than a “small piece 

of Plasticine” and it becomes harder during its severe plastic compression in the 

contact due to strain hardening. It is interesting to note that Dawson and Coyle 
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reported that the direction of transfer of “their” Plasticine depended on the materials 

used, when the two discs were made of different materials (for example: aluminium 

for one disc and copper for the other). In other words, the semi-solid substance 

(Plasticine) could very well adhere to the slower surface when the two discs were of 

different material. 

 In the particular case of this Thesis, by entering the outlet zone of the contact, 

the particle has to decide which surface to follow and it is rather clear that it will 

prefer the surface that carries most of the sticky substance, because the particle itself 

is usually attracted to the substance. For the particle to eventually adhere to the faster 

moving surface is by no means proof that the particle followed the faster moving 

surface all along the inlet and the Hertzian zone of the contact. The model presented 

in this chapter simulates the motion of the particle only in the inlet and Hertzian zone 

of the contact and is obviously not involved with what happens in the outlet zone. 

However, another explanation that could be applied in some cases is presented in the 

example of chapter 5 and is basically associated with the possible melting of debris 

due to the high frictional heat caused by their shearing in an elastohydrodynamic 

gap, as is shown in chapters 3 and 5. Nevertheless, possible melting of the particle 

would mark the end of the current analysis, because, at that point, the particle has 

already caused the greatest harm it could possibly do to the counterfaces. 

 

 

 

 

2.9 Conclusions 
 

The example of section 2.8 is representative of the kind of results derived from the 

model developed in this chapter. The theoretical simulation of the entrapment and 

motion of a ductile and soft debris particle in an elastohydrodynamic contact, has led 

to a plethora of important conclusions, most of which have been experimentally 

verified. A summary of these conclusions follows below. 

(a) The likelihood of entrapment of a particle in an elastohydrodynamic contact 

depends mainly on the friction coefficients of the counterfaces, the geometry of 

the deformed contact (central film thickness and radii of curvature in the inlet 

zone), and the size of the particle. If there is sliding in the contact and one of the 
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counterfaces is stationary (not moving towards the centre of the contact), then 

even if a particle is initially “accepted” in the contact, the reversal of the direction 

of one of the solid frictional forces on it may change the situation, resulting in a 

temporary particle rejection. The same mechanism is proposed in Wan and 

Spikes (1988). In the latter case, it is speculated that the particle will undergo a 

“micro-forging” process and, if it is sufficiently soft, it will be plastically 

deformed to the point its thickness is reduced, allowing it to enter deeper inside 

the elastohydrodynamic gap, until it becomes irreversibly trapped. This kind of 

behaviour may result in lubricant starvation because the particle (and possibly 

other particles that gather around it) stands as an obstacle in the oil replenishment 

of the contact. All this is analyzed in section 2.3.  

(b) There is a fluid drag force on the particle, which comprises two components. The 

first component is due to the elastohydrodynamic static-pressure gradient in the 

contact (see sub-section 2.5.1). The second component is due to the dynamic 

pressure of the lubricant on the particle, because the particle distorts the 

streamlines of the flow (see sub-section 2.5.2). Both of these components are 

usually very small and do not contribute to the motion of the particle inside the 

elastohydrodynamic gap (see figure 2.10 and table 2.5). However, their role may 

become significant in some circumstances, and contribute to the temporary or 

final rejection of a particle from a contact. Such circumstances involve generally 

the following two cases. 

• Sliding contacts where one counterface is stationary and has a friction 

coefficient higher than the friction coefficient of the other (moving) 

counterface. 

• Sliding contacts and small particles, in cases where the central film 

thickness is relatively large and the elastohydrodynamic pressure is high. 

(c) The solid frictional forces between the particle and the counterfaces are usually 

significantly higher than the fluid drag forces (figure 2.10). Due to the low 

magnitude of the fluid drag forces as well as the small inertia of the particle, 

owing to its infinitesimal mass, the two solid frictional forces are almost equal to 

each other (figure 2.9) and are the prevailing forces which govern the motion of 

the particle inside the elastohydrodynamic gap. 
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(d) If the particle is entrapped, it sticks to the counterface with the higher friction 

coefficient (which is usually the softer), immediately after being pinched (see 

figure 2.11). This is true even if the difference between the friction coefficients of 

the two counterfaces is relatively small, as for example, of the order of 0.01. 

Experimental verification for the sticking of the particle to one counterface can 

be found, for example, in Williams and Hyncica (1992), Dwyer-Joyce et al. 

(1994), Nicolson (1996), and Hamilton et al. (1998). However, the reader is 

advised to read the comments in the last paragraph of section 2.8. 

(e) Soft and ductile particles are flattened and become thin, roughly circular disks as 

they are plastically deformed (see section 2.4). Experimental verification for this 

behaviour can be found in, for example, Wan and Spikes (1988), Dwyer-Joyce et 

al. (1992), Nelias et al. (1992), Dwyer-Joyce (1993), and in others. The 

circularity of the deformed particles depends on the amount of sliding in the 

contact. For high sliding conditions, deformed particles are expected to acquire a 

rather elliptical shape. 
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CHAPTER 3 

 

THERMAL MODELLING OF THE FRICTIONAL 

HEATING BETWEEN A SOFT PARTICLE AND 

THE COUNTERFACES IN AN ELASTOHYDRO-

DYNAMIC LINE CONTACT 

 

 

 

3.1 Introduction 
 

In chapter 2, it is shown that a particle entering an elastohydrodynamic contact 

encounters some degree of sliding with the counterfaces. This is obviously expected 

when there is sliding in the contact, which happens when the counterfaces have 

different tangential speeds. However, even in the case when the contact is a purely 

rolling one, there is still relative sliding between the particle and the counterfaces, 

owing to the plastic compression of the particle, which results in its lateral 

expansion. The latter is expressed by the extrusion speed of the particle, as is 

analyzed in section 2.7 (see equation (2.52) and figure 2.11). Because of this relative 

sliding, there is friction between the particle and the counterfaces, which produces 

heat. This heat is absorbed from the particle, the counterfaces and the lubricant in 

variable proportions, defined by the thermal properties of the elements involved in 

the process. Moreover, heat is produced inside the particle, owing to its plastic 

deformation. There is also a rather small amount of heat produced due to the rapid 

elastic/plastic displacement of the counterfaces in the area where the particle resides. 

The latter is better known with the term “volumetric effects” in the case where there 

are plastic deformations involved. Volumetric effects include two sources of plastic 

deformation (Kennedy, 1984).
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(a) Ploughing of hard surface asperities through the surface of a softer material 

(Bowden and Tabor, 1986). 

(b) Near surface plastic deformation owing to adhesive surface tractions (Rigney and 

Hirth, 1979). 

 Protasov and Kragelskii (1982) developed a molecular-mechanical model of 

friction interactions and estimated that for copper sliding against steel (this example 

is of particular importance in the present study where the particles are much softer 

than the counterfaces), 85 % of the frictional energy is dissipated by volumetric 

processes, especially by plastic deformation. However, this estimate may be low 

because the example is concentrated on dry rather than lubricated contacts. 

 If most of the frictional energy is dissipated at the upper surface layers as 

plastic deformation, then the obvious question is what happens to that energy. 

Numerous studies (see for example Uetz and Föhl (1978), and McLean (1962)) have 

indicated that around 95 % of the plastic deformation energy is transformed into 

thermal energy - in other words, it is dissipated as heat. This takes place at the top 

surface layers, within a few microns beneath the surface. 

 Frictional heating is often responsible for significant temperature increase of 

sliding bodies. The temperature increase, which is known as flash temperature 

(temperature increment above the bulk temperature), plays an important role in the 

reliability of the sliding components, especially in terms of scuffing and fatigue. 

High skin temperatures affect the way in which wear is developed and can also be 

responsible for increased oxidation, corrosion and other structural changes, either 

microscopically or macroscopically (see for example Earles and Powell, 1967). 

Sliding surface temperatures can be detected experimentally and predicted 

analytically. 

 Experimental methods involve the following techniques (Kennedy, 1984). 

(a) Embedded subsurface thermocouples. This method is best suited for the 

measurement of bulk temperatures rather than the actual contact temperatures. 

(b) Dynamic thermocouples. 

(c) Contact thermocouples. 

(d) IR (infrared) techniques. These involve the detection of IR radiation by focusing 

an IR detector (pyrometer) either at the outlet region of a contact or directly on 

the contact zone. Alternatively, an IR sensitive film can be used to obtain 
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photographs or movies of the contact zone. These methods are considered to be 

among the most accurate. 

(e) Metallographic techniques. These concentrate on the examination of the 

microstructure of the top surface layers of worn specimens, for example, through 

micro-hardness measurements. 

For more information and references on the previous techniques, the reader is 

directed to the excellent paper of Kennedy (1984). 

 Experimental techniques sometimes fail to give reassuringly accurate 

measurements of the real contact-temperatures, mainly due to the fact that the contact 

is a rather inaccessible area, comprising a number of small contact spots within the 

“macroscopic” contact area, which vary in number and location, the variation being 

rapid and very difficult to simulate (as in a random process). Those contact spots 

encounter temperatures that are much higher than the temperatures in closely situated 

regions, as has been shown in analytical simulations and verified in experiments. For 

example, Griffioen et al. (1986) showed experimentally (using an infrared scanning 

camera) that the dry contact temperature of asperities of a silicon nitride pin sliding 

against a sapphire disk can be as high as 2700 °C, concentrated in areas of about 

100 µm in diameter. Wolf (1991) showed experimentally (using an IR technique) as 

well as analytically that the local temperature between sliding asperities (in 

longitudinal roughness) in a lubricated contact could be as high as 1500 °C. Quinn 

and Winer (1985) reported flash temperatures of the order of 1200 °C in contact 

spots of about 50 µm in diameter on the surface of a steel pin sliding on a sapphire 

disk and photographed those elusive hot spots (see figure 3 of their paper). The 

interesting observation in the latter study was that the duration of the radiating hot 

spots was in the order of 1 ms. 

 Due to the difficulties and inaccuracies in experimental studies of flash 

temperatures, the problem is often better approached analytically. Important 

analytical work has been initiated by Blok (1937a) and Jaeger (1942). They both 

simplified the problem by studying the equations associated with a single point or 

band source of heat, later extending their horizon to include a wider variety, like a 

circular and a square or rectangular heat source of either constant or variable 

strength. Those initial studies have undergone extensive testing during the past 50 
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years with improved methodologies and have proved to be surprisingly accurate, 

despite the assumptions used to produce them, as is explained in detail later. 

 It is now clear that extreme heat conditions can often be expected in sliding 

contacts, when the pressures and/or sliding speeds are relatively high. Consequently, 

thermal failure of a contact is a possibility that must be studied as part of the design 

of Machine Elements, like gears, cams and followers etc. Even if the frictional 

heating is not solely responsible for a failure, the thermal stresses due to this heating 

must, in many cases, be superposed to the mechanical stresses (for example, due to 

particle’s plastic compression in the contact) in order to assess the true risk of any 

damage. It is generally accepted that roughness asperities can cause high temperature 

increments; then it also follows that debris particles, which are usually bigger than 

roughness asperities, could produce similar, or even more severe, thermomechanical 

effects, albeit affecting larger areas than in the case of two engaging asperities. 

 This possibility has been given minimal attention in the literature. Almost all 

published studies are confined to isothermal contacts, which are modelled as a slow 

compression process (see for example Hamer et al. (1989b), and Ko and Ioannides 

(1989)). At the time of writing this Thesis, the author is aware of only one 

publication dealing with the theoretical modelling of flash temperatures produced by 

the sliding of debris particles in concentrated contacts (Khonsari and Wang, 1990). 

In the latter publication, the authors attempt to relate abrasive particles and scuffing 

failure, by postulating that if the flash temperatures owing to particle frictional 

heating exceed a specific value, then scuffing takes place. 

 As is well-known, scuffing (known as “scoring” or “galling” in America), is a 

form of catastrophic wear, which, in lubricated contacts, is associated with sudden 

lubricant film breakdown and metal-to-metal contact. Scuffed surfaces appear to be 

thermally distorted, with clear evidence of material melting. Although there is a lot 

of controversy regarding the probable mechanisms responsible for the onset of 

scuffing, experimental findings support the idea that scuffing is a debris-sensitive 

phenomenon (see Chandrasekaran et al. (1985), who found that systems, which 

operate safely with clean oil, can fail when the oil becomes contaminated, and the 

mode of such failure resembles scuffing). The idea behind a particle-related onset of 

scuffing has been proposed by Enthoven and Spikes (1995), who found that for a 

purely sliding contact of a steel ball and a sapphire disk, “…the onset of scuffing is 
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always preceded by the build-up of fine particles of wear debris in the contact inlet 

which result in starvation and consequently scuffing.”.

 

 In the first chapter of this Thesis, it is shown how the accumulation of 

particles in the inlet zone of a contaminated elastohydrodynamic contact can occur 

and be a likely cause of lubricant starvation. Poor lubrication and bad contact 

replenishment are reported to result in sudden film breakdown, which is then 

followed by increased wear and, depending on the load and sliding speed, in 

scuffing. 

 In addition, as explained above, sliding roughness asperities may encounter 

high flash temperatures, which could be high enough as to cause material melting or 

at least tempering reactions and metallurgical changes in the materials involved. 

Consequently, it may be assumed that debris particles, which resemble sliding 

roughness asperities in two-body contacts, may be responsible, under specific 

conditions, for high frictional heating and scuffing-like wear mechanisms. This has 

been suggested by Chandrasekaran et al. (1985), based on experimental results 

regarding scuffing tests in 4-ball machines. 

 The present chapter sets the foundation to test the hypothesis of the possible 

association between lubricant contamination particles and scuffing in elastohydro-

dynamically lubricated contacts. This is done on a purely theoretical level, and the 

proposed model is developed mainly for soft and ductile particles, which, in the 

modern literature, are considered much safer than hard particles, for obvious reasons. 

Nevertheless, it is later shown that even soft particles can be responsible for high 

flash temperatures in lubricated contacts, and that there exists a rather hidden mode 

of local scuffing, which may explain some of the wear observed in failed 

contaminated contacts. 
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3.2 Frictional heating caused by a soft particle in a lubricated 

contact 
 

In this section, a model of the frictional heating process, due to the squashing of a 

debris particle in an elastohydrodynamic contact, is developed for soft and ductile 

particles. The model is made as general as possible, involving the following. 

• 3-dimensional flash temperature and thermoelastic stress calculations for both 

counterfaces. 

• Internal heating of the particle due to its rapid plastic compression. 

• Counterface cooling due to convection to the lubricant. 

• Particle cooling due to convection to the lubricant. 

• Temperature-dependent mechanical and thermal material properties of all bodies. 

• Thermal anisotropy of both counterfaces. 

 As is explained in section 2.4, a soft and ductile particle is modelled as a 

cylinder, immediately after its entrapment (figure 2.5). That cylinder collapses 

progressively due to the plastic compression inside the elastohydrodynamic gap, and 

adopts a rather circular disk shape at the final stage of its deformation, inside the 

Hertzian zone of the contact. Because of particle’s friction with the counterfaces, the 

particle resembles a heat source of variable strength. It is worth noting here that soft 

particles defer from hard particles when squashed, in that the area covered by a soft 

particle when fully compressed in order to pass through an elastohydrodynamic gap 

is quite larger than the corresponding area covered by a hard particle. For the 

example analyzed in section 2.8, a 30 µm soft (100 HV) particle becomes a 160 µm 

disk (see table 2.4 and figure 2.8) when forced to pass through an elastohydro-

dynamic contact with a central film thickness equal to 0.7 µm. Treating the particle 

as a single heat source may not be particularly valid and the variable pressure and, 

hence, variable heat source strength on the facial surfaces of the particle, must be 

properly accounted for. 

 To simulate this variable strength, the particle is divided in a number of point 

sources of heat. This is achieved by dividing each of the two faces of the particle, 

namely the top and bottom base of the equivalent cylinder (figure 2.5), into a series 

of concentric rings (tracks), which are further divided into a series of elemental 

segments, called sectors, as is shown in figure 3.1. Each of these sectors is 
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represented by a point source of heat. The velocity of each sector, relative to a space-

fixed coordinate system (earth) has two components. 

(a) A sliding component Vslid due to the sliding motion of the particle as a rigid body, 

relatively to surface 1 or 2 (either Vslid = Vp1 or Vslid = Vp2, see the nomenclature 

for chapter 2). 

(b) An extrusion component, owing to the local extrusion speed of the particle 

(equation (2.52)). 

 

 Axis x in figure 3.1 coincides with the direction of rolling/sliding in the 

contact. Using axes x and y as shown in figure 3.1, the resultant velocity of a sector 

is analyzed in two components Vx and Vy as follows: 
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Figure 3.1 Particle segmentation for the thermal model. 
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Angle ϑ is measured starting from the positive part of axis x. The resultant speed of a 

sector is: 

 

2
y

2
x VVV +=                                                                                                          (3.2) 

 

The heat generated due to friction between a sector and a counterface is: 

 

rrpVq ∆⋅∆⋅⋅⋅⋅⋅= ϑµα                                                                                       (3.3) 

 

where α is the heat partition coefficient, µ is the friction coefficient between the 

particle and a counterface, p is the solid pressure on the particular sector, and r is the 

distance of the sector from the centre of the particle. 

 The differential equation of heat conduction 
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where θ is temperature, t is time and λ is thermal diffusivity, is satisfied by 
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where Q is the “strength” of the heat source (Carslaw and Jaeger, 1959). Solution 

(3.5) can be interpreted as the temperature at position (x,y,z) in an infinite solid due 

to a quantity of heat Q·ρ·c (ρ being the material density and c being the specific 

heat), instantaneously generated at time t = 0 at a point (x′,y′,z′). Equation (3.5) gives 

the temperature due to an instantaneous point source of heat. 

 Allowing the thermal properties to vary with direction (not temperature-

related variations), materials which are thermally anisotropic can be studied. 

Although this is not expected to alter significantly the temperature fields in the 

counterfaces, it will certainly distort them (even slightly). Changing the temperature 

distributions results in changes in the thermal and overall stress distributions. The 
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latter is of particular importance during the study of fatigue and the risk of plastic 

deformations as is shown in chapter 5. In any case, the concept of thermal anisotropy 

is incorporated in this analysis mainly for reasons of completeness, and it is fully 

applied in the example of chapter 5. 

 Introducing complete thermal anisotropy in the heat conduction equation, 

results in a complicated, non-linear, partial differential equation, involving cross 

derivatives of the spatial variables x, y and z. This can be simplified considerably by 

assuming that the materials are thermally orthotropic. The latter means that these 

materials have three planes, perpendicular to each other, which are planes of material 

symmetry. The thermal properties of a thermally orthotropic material are the same in 

directions symmetrical about the principal planes of thermal orthotropy. (An example 

of a mechanically orthotropic material is a cold-rolled metallic sheet.) 

 Thankfully, the assumption of orthotropy is a good approximation of the 

behaviour of carbon steels (the material used for the counterfaces throughout this 

Thesis), which belong to the cubic atomic system. Alloys of steel, especially after 

heat treatment, may not have a cubic-system atomic structure. However, the 

assumption of orthotropy is still a good compromise. 

 The heat conduction equation for an orthotropic medium is written as 

follows: 
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where Kx, Ky and Kz are the principal thermal conductivities in the directions of axes 

x, y and z respectively. Using the transformation 
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(see for example Özisik, 1993), where 
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equation (3.6) gives 
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whereas 
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and λx, λy and λz are the principal thermal diffusivities in the directions of axes x, y 

and z respectively, defined as 
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The transformed equation (3.9) is of the same form as equation (3.4) and, hence, it 

has a solution of the form (3.5). Using equation (3.5) and transforming back to the 

original coordinates x, y and z, the solution of the “anisotropic” equation (3.6) is 

finally written as follows: 
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 The flash temperature at time t, at point (x,y,z), due to the heat q·dt′ emitted at 

time t′ at surface point ( )0,, yx  of a semi-infinite medium, can now be calculated by 

the following expression: 
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The point of the medium, which at time t is at position (x,y,z), at a past time t′ was at 

position (x – xV , y – yV , z), where 
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∫ ′
′⋅=

t
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V tVx

  

  
x d      and     ∫ ′
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t
V tVy

  

  
y d                                                                (3.14) 

 

Moreover, 

 

( )ϑcos⋅= rx      and     ( )ϑsin⋅= ry                                                                    (3.15) 

 

It must be noted that equations (3.5) and (3.12) refer to an infinite medium whereas 

expression (3.13) refers to a semi-infinite medium. Therefore, the temperature in the 

semi-infinite-medium case is double the temperature of the infinite-medium case, as 

can be realized from the dividers used; 4 for the former and 8 for the latter. 

 Before integration in time and space, integration steps ∆r and ∆ϑ must be 

defined. Using a constant number of tracks Nt (for example Nt = 50), it is defined that 

 

t

ˆ
N

R
r =∆                                                                                                                 (3.16) 

 

where R is the radius of the deformed particle (see equation (2.20)). Since radius R 

varies during the deformation of the particle, the spatial step ∆r varies, too. The 

angular step ∆ϑ is defined as 

 

r

r∆=∆ ˆϑ                                                                                                                (3.17) 

 

The previous definition means that there are more sectors on an outer track than on 

an inner one. The number of sectors Ns on a track can then easily be found: 
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where the brackets in the previous equation denote the integer part of the enclosed 

expression.
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 The temperature θ at time t, at point (x,y,z) of the medium, is finally given by 

the following equation: 
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where θ0 is the initial temperature, which is considered the same throughout the 

bodies and equal to the bulk temperatures. 

 Heat partitioning, surface cooling and other related subjects are studied and 

modelled in the following sections. It is noted that the analysis of this section does 

not account directly for temperature-dependent thermal properties of the materials 

taking part in the heating process. This is imposed through corrections of the results 

by means of a correction loop in the computer code, as is explained later (section 3.7 

and chapter 5). 

 

 

 

 

3.3 Heat generation inside the particle 
 

The model is developed for soft and ductile particles, as is explained in chapter 2. 

Therefore, the particle can be considered behaving as a rigid-perfectly-plastic solid. 

At the time when the particle starts to deform, it shears internally. To simplify the 

analysis, the shearing is assumed to take place on one plane, which can suitably be 

chosen as the mid-plane of the equivalent cylinder, as is shown in figure 3.2. 

Although a different shearing profile (shearing surface inside the particle) could be 

chosen, taking into account that the particle sticks to one counterface and shears on 

the other, this choice is not of particular importance because, as is shown in the 

example of chapter 5, the heat generated inside the particle accounts for only about 

1 % of the maximum flash temperature of both counterfaces. Therefore, the 

temperature changes induced by choosing different shearing surfaces inside the 

particle would be negligible. 
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 The friction coefficient between the two relatively sliding material-layers at 

that plane and the solid pressure on the particle are then related through the following 

equation: 

 

pint kp =⋅µ                                                                                                             (3.20) 

 

where kp is the yield stress of the material of the particle in simple shear. 

 

 

 

Figure 3.2 Heat generation inside the particle. 

 

 

The internal frictional heat for any sector is 

 

2
t

2

extrpextrintp N

R
VkrrVpq ⋅⋅=∆⋅∆⋅⋅⋅⋅= ϑµ                                                         (3.21) 

 

(using equations (3.16), (3.17) and (3.20)). From equations (3.21) it is seen that there 

are two variables that define the level of internal particle heating (heat per unit area 

of a sector, qp/R
2): the extrusion speed and the particle’s yield stress in simple shear 

(kp). The extrusion speed varies as the particle moves in the inlet zone of the contact 

and is practically zero inside the flat Hertzian zone (see figure 2.11). Literally 

speaking, the extrusion speed is slightly greater than zero inside the Hertzian zone of 

the contact due to the thermal expansion of the counterfaces as the passing particle 

Mid-plane 
(heat-generation zone) 

Initial particle 

Deforming particle 
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heats them up, but this movement is infinitesimal to make any noticeable difference 

in the results (although this is taken into account in the calculations). On the other 

hand, kp is temperature dependent, but its contribution in altering qp is much smaller 

than the contribution of the extrusion speed in the inlet zone of the contact. 

Nevertheless, temperature-dependent properties are a fact, and this is taken fully into 

account in all calculations, as is explained in section 3.7. 

 Conclusively, qp depends largely on the extrusion speed. Finally, integration 

throughout the base area of the particle (taking into account the variable solid 

pressure on the particle) gives the total amount of heat, which is generated internally. 

 

 

 

 

3.4 Heat partition 
 

The heat produced due to friction between the particle and the counterfaces is 

partitioned between the particle and the counterfaces in proportions, which are 

defined by the thermal properties of the materials involved in the process. The 

subject of partitioning of the frictional heat produced between two relatively sliding 

surfaces has been studied for several decades and there are, basically, two methods to 

estimate a heat partition coefficient. The first method, due to Blok (1937a, 1937b) is 

to equate the maximum temperatures in the contact zone of two cooperating surfaces, 

assuming equal bulk temperatures. The second method, due to Jaeger (1942), is, 

similarly, to equate the two average temperatures in the contact zone (again for equal 

bulk temperatures). Archard (1958) used a rather hybrid method by assuming 

successively that all of the produced heat goes to each of the rubbing surfaces and 

calculated an average contact temperature by interpolating the two results using the 

parallel (electric analogue) model. 

 A more accurate approach is to match the temperatures of all integration 

points inside the contact. This leads to a significantly complicated and time-

consuming analysis, involving the solution of integral equations (see for example 

Cameron et al., 1964, and Bos and Moes, 1994). However, as Barber (1970) points 

out, the solutions of Blok and Jaeger are remarkably accurate when compared with 
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corresponding integral solutions, and hence, can be used when accuracy is not of the 

utmost importance. 

 The heat partition depends on the sliding speed between the two rubbing 

surfaces, as well as on the thermal properties of the surfaces and the shape and 

dimensions of the heat source. Firstly, the following parameter is defined: 

 

p
p 4

ˆ λβ
⋅
∆⋅= rV

                                                                                                           (3.22) 

 

where λp is the thermal diffusivity of the material of the particle. Assuming perfect 

thermal contact between the contacting bodies (particle and counterfaces) and a 

square heat source, the heat partition coefficient can be calculated by the following 

equations: 
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where index i refers to the surface to which a proportion αi of the total heat is 

transferred and Kp is the thermal conductivity of the material of the particle. The 

completeness of thermal contact is guaranteed by the high pressures developed 

between the particle and the counterfaces, which are of the order of a few hundred 

MPa for soft particles and up to a few GPa for hard particles. Such high pressures 

lead to boundary films between the particle and the counterfaces, which are of the 

order of nanometers. For interfacial temperatures higher than about 150 °C, the 

aforementioned lubricant films are known to collapse due to adsorption or melting, 

which results in higher friction coefficients and even more intimate contact, similar 
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to the case of a dry contact (see for example Russell et al. (1965), and Lai and Cheng 

(1985)). 

 The quoted heat-partition equations (3.23)-(3.25) refer to a square heat 

source, as already mentioned. These equations are applied to each sector of the 

particle. A sector has polar dimensions ∆r and r·∆ϑ (figure 3.1). The choice of the 

angular step ∆ϑ (see equation (3.17)) was intentional in order to produce a more-or-

less square sector: (r·∆ϑ)·∆r = (r·∆r/r)·∆r = ∆r·∆r. 

 Equations similar to (3.23) and (3.25) are used extensively in modern 

literature and originated from the preliminary analyses of Blok and Jaeger. Equation 

(3.24) is an interpolation result based on the initial graphs of Jaeger (1942), the 

interpolation done by Greenwood (1991). 

 A question comes on surface when considering that the bodies participating 

in the study (the counterfaces and – especially – the particle) are not semi-infinite. 

The assumption of infinity was fundamental in deriving the heat partition equations 

quoted earlier. The problem of infinity is related to the bulk temperature rise due to 

insufficient cooling and the limited heat capacity of the finite bodies. However, 

considering the minute dimensions of a debris particle in comparison with the 

dimensions of the two counterfaces and, especially, the very short duration of the 

frictional heating incident (of the order of 1 ms, as is shown in the examples to 

follow), the assumption of infinity is not expected to affect the results significantly. 

For example, in a typical case of two engaging gear teeth and a 20 µm particle, each 

tooth could typically have at least 60 million times the volume of the particle, 

excluding the tooth’s foundation (gear body). Moreover, the engaging elements that 

squash the particle usually encounter heat losses at their boundaries, either by 

convection or by radiation. It is, therefore, safe to regard the counterfaces as large 

heat sinks. Similar considerations are reported by Tian and Kennedy (1993), who 

support the use of Blok’s formulation for sufficiently accurate analyses. On the other 

hand, the particle is relatively small and becomes very thin as it enters the Hertzian 

zone of the contact. In the latter area, the thickness of the particle is of the order of 

the unperturbed average film thickness of the lubricated surfaces (usually less than 

1 µm - see for experimental proof in Wan and Spikes (1988)). Therefore, the particle 

can be seen as a thin layer, incapable of storing any substantial amount of heat due to 

its limited heat capacity. Consequently, the particle behaves solely like an idealistic 
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heat source. A case with great similarity to this description (albeit not particle 

related) was analyzed by Ryhming (1979). Further comments on this follow later. 

Conclusively, the analyses of Blok and Jaeger are adequate for the purposes of this 

study. It is interesting to mention at this point the work of Quinn and Winer (1985) 

on the thermal aspects of oxidational wear. In the previous paper, the importance of 

an always-present oxide film on the rubbing surfaces was made clear, as that film 

acts as that ever-elusive “interface” mentioned in many publications regarding the 

heat partitioning between sliding surfaces (see for example Johnson, 1985, section 

12.4). The oxide films act as intermediaries in the division of the frictional heat 

between the sliding surfaces and their role has great similarity with the typical soft 

particle of this Thesis.  

 After the previous clarifications, the formulation can proceed by examining 

what happens to the heat that goes to the particle. As already explained, the particle 

has a very limited heat capacity due to its very small size. Hence, it cannot store 

significant amounts of heat. Moreover, as the particle approaches the centre of the 

contact, its thickness is obviously reduced, the pressure on it is obviously increased 

(figure 2.9) and, as a consequence (see equation (3.3)), the frictional heat is 

increased. Because of its very small thickness, the primary heat transfer mechanism 

inside the particle is one-dimensional conduction along the z-axis. Heat convection 

from the periphery of the particle to the counterfaces (which is modelled later) will 

be shown to be infinitesimal. Therefore, because of its 

(a) very small thickness (looking like a thin layer) 

(b) very small heat capacity, and 

(c) complete thermal contact with the counterfaces (due to the high solid pressures), 

the particle is visualized to behave like a heat source, transferring the heat, which is 

temporarily stored to it, back to the counterfaces (and to the lubricant). In the 

mathematical model of this chapter, the aforementioned temporary storage and back 

transfer is simulated as is shown in the following two steps. 

 

Step 1: 

From time (t – ∆t) to time t, a particle sector receives an amount of heat 

 

( ) ( ) p2p,21p,1totalp, 11 qqqq +⋅−+⋅−= αα                                                                (3.26) 
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where qp,1 and qp,2 are the amounts of frictional heat per sector, which are generated 

at the interfaces of the particle and counterfaces 1 and 2 respectively (calculated by 

equation (3.3)), a1 and a2 are the heat partition coefficients giving the proportion of 

frictional heat which goes to counterfaces 1 and 2 respectively, and qp is the amount 

of heat (for the particular sector) generated inside the particle (see equation (3.21)). 

 

Step 2: 

During a time step ∆t, in other words from time t to time (t + ∆t), the particle sector 

emits an amount of heat qe, which is 

 

[ ] −⋅−= tqqq  p,convtotalp,e δ                                                                                        (3.27) 

 

where qp,conv is the heat lost from a peripheral sector of the particle by convection to 

the lubricant and δ is a parameter, defined as 

 


=

sector periherala for  ,  1 

sector internal anfor  ,  0
ˆδ                                                                               (3.28) 

 

As can be realized from equation (3.28), heat convection is assumed to affect only 

the peripheral sectors, whereas the inner sectors act as one-dimensional heat 

conductors along the z-axis, as was explained earlier. 

 The amount of heat qe is shared between two opposing counterface sectors 

(sectors belonging to the two counterfaces) in proportions defined by a heat partition 

coefficient, derived from equations (3.23)-(3.25). If a22 is the fraction of the heat qe 

that goes to a sector of counterface 2 (assuming the particle sticks to counterface 1), 

then, similarly to equations (3.22)-(3.25), the following equations are used: 
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where 

 

1,z

12
12 4 λβ

⋅
∆⋅≡ rV

                                                                                                        (3.32) 

 

whereas λz,1 is the principal thermal diffusivity of counterface 1 in the z-axis. 

Therefore, counterface 2 receives an amount of heat equal to a22·qe, whereas 

counterface 1 receives the remaining amount (1 – a22)·qe. As has already been shown 

(see figure 2.11), the particle always sticks to one counterface and slides on the other. 

Hence, it acts like a protuberance, but with different mechanical and thermal 

properties compared with the surface to which it sticks. 

 In conclusion, here follow the amounts of heat (per sector) q1 and q2, which 

are transferred to counterfaces 1 and 2 from time t to time (t + ∆t): 

 

( ) e221p,11 1 qqq ⋅−+⋅= αα                                                                                     (3.33) 

 

e222p,22 qqq ⋅+⋅= αα                                                                                            (3.34) 

 

 

 

 

3.5 Heat losses due to convection from the particle to the lubricant 
 

The frictional heat transferred to the counterfaces and the particle is further partly 

transferred to the lubricant through convection. The particle loses heat from its 

periphery, since both of its faces are in intimate contact with the counterfaces. In the 

present section, a rough estimation of the heat losses to the lubricant is attempted by 

assuming that the temperature of the lubricant is constant throughout the solution 

domain, and equal to the bulk temperature of the solids, although this can be varied 

in the simulation. In reality, the lubricant is heated due to its internal shearing and by 
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the heat emitted by the counterfaces and the particle. However, it is shown later that 

these heat losses are infinitesimal and produce unnoticeable changes in the overall 

temperature results. The latter is shown so due to the extremely small value of the 

heat convection coefficient. Therefore, the choice of lubricant’s reference 

temperature is, essentially, of no particular importance. 

 Firstly, the heat loss from the particle is modelled. Applying Newton’s law of 

heat convection, a peripheral sector of the particle loses an amount of heat qp,conv 

during the time step ∆t, where 

 

( )fluidpconv,p θθ −⋅⋅= Ahq L                                                                                      (3.35) 

 

where hL is the surface-length convection coefficient, A is the wet area of a 

peripheral sector, θp is the temperature of the sector and θfluid is the reference fluid 

temperature at the vicinity of the sector. 

 The wet area A of a sector is 

 

hrhrA ⋅∆=⋅∆⋅= θ                                                                                             (3.36) 

 

where h is the lubricant film thickness at the position of the sector. 

 The temperature θp of the sector is considered to be equal to the average 

temperature of the two counterfaces (θ1 and θ2) at the position of the sector: 

 

2
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p

θθθ +
=                                                                                                           (3.37) 

 

 The convection coefficient is given by the following equation: 

 

L

K
h p

LL ⋅= Nu                                                                                                       (3.38) 

 

where Kp is the thermal conductivity of the particle, L is an integration reference 

length, chosen here as 
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22
ˆ
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L
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                                                                                        (3.39) 

 

and NuL is the surface-length Nusselt number. The calculation of the Nusselt number 

depends on the mechanism of the heat convection: forced, free or mixed convection. 

The convection mechanism can be established through the following criterion: 
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where “Gr” is the Grashof number and “Re” is the Reynolds number. According to 

Chapman (1987), the surface-length Nusselt number can be estimated as follows: 
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where “Pr” is the Prandtl number and RaL is the surface-length Rayleigh number. 

The mixed convection regime will be shown (in chapter 5) to be of no particular 

importance in this study and, hence, it is not studied any further. The surface-length 

Reynolds number is 
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where η is the lubricant’s dynamic viscosity (see equation (2.30)), ρfluid is the density 

of the lubricant at the vicinity of the sector for the local elastohydrodynamic pressure 

of the lubricant (see equation (2.31)), and U is the speed of the lubricant relatively to 

the sector 

 

( ) sin 12 ϑ⋅=VU                                                                                                    (3.43) 

 

whereas angle ϑ is the angle of the sector (figure 3.1). 

 The Prandtl number is defined as 
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where cfluid and Kfluid are the specific heat and the thermal conductivity of the 

lubricant, respectively. 

 The surface-length Grashof number is defined as 
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where g is the gravitational acceleration (g ≅ 9.81 m/s2) and β is the following 

parameter: 
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Using equation (2.31), equation (3.46) gives 

 

ρ
ρβ 0
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 Finally, the surface-length Rayleigh number is calculated as 
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PrGrRa ⋅= LL                                                                                                        (3.48) 

 

All variables are now defined, so that the calculation of the convection coefficient hL 

is feasible. The total heat lost along the particle’s periphery, during a time step ∆t, is 
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3.6 Heat losses due to convection from the counterfaces to the 

lubricant 
 

The counterfaces are cooled by the lubricant, losing heat through convection at the 

area where they are not in contact with the particle. The heat losses can be calculated 

in exactly the same way it is done for the particle (see section 3.5). Partitioning both 

counterfaces into elemental rectangles of area S, the heat lost by such a surface 

element during a time step ∆t is 

 

( )fluidcool θθ −⋅⋅= Shq L                                                                                          (3.50) 

 

where θ is the local skin temperature of a counterface. The surface-length convection 

coefficient hL is calculated from equation (3.38), applying the analysis of section 3.5. 

 A rectangular surface element that loses heat due to convection can be seen as 

a heat sink (the opposite of a heat source). This way, the analysis of section 3.2 can 

readily be applied to this case. The flash temperature at time t, at point (x,y,z), due to 

the heat absorbed from a surface point (xs , ys , 0) of a semi-infinite medium, is 

(similarly to equation (3.13)) 
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Finally, the temperature θs at time t, at point (x,y,z) of a counterface, combining 

frictional heating and surface cooling, is 
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Equation (3.19) 

 

where θ is calculated from equation (3.19) and the surface S , where the internal 

double integral is calculated, is located as follows: 

 

( ){ }finfininit
222

p 0   and      , yyxxxRyxxS ssss <<<<>+−=                           (3.53) 

 

whereas xp is the distance of the centre of the particle from the centre of the contact 

(given by x in equation (2.40)), R is the radius of the (deformed) particle disk (given 

by equation (2.20)), and xinit, xfin and yfin are limits of the calculation grid (suitably 

chosen as is shown in chapter 5). In the way it is defined, surface S  excludes the 

area occupied by the particle at a specific time t, because there is, obviously, no heat 

loss at the aforementioned area. 

 As can be realized from equation (3.52), the temperature [θs]t appears in both 

sides of the equation, whereas it is part of the integrand in the right side for the last 

step of the time integration. This is resolved by a correction loop in the computer 

code, as is explained in chapter 5. As an initial guess, it is obvious to assume that   

[θs]t ≅ [θs]t-∆t. In the computer code, the temperature θs is calculated at each time step 

before proceeding to the next time step. Therefore, the whole past of θs is known 

when it is attempted to calculate θs for the next time “point”. 
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3.7 Temperature-dependent properties 
 

In reality, all material properties are more-or-less temperature dependent. Therefore, 

for the sake of completeness, all properties of all bodies involved in the process 

(counterfaces and particle) are taken as temperature-dependent. Table 3.1 shows a 

list of these variable properties. 

 

 

Table 3.1 

 

 

Parameters of anisotropy, like for example the principal thermal conductivities, are, 

accordingly, temperature dependent. Moreover, any other variable that is function of 

any of the temperature-dependent properties of table 3.1 is obviously also affected 

(an example is the Lamé constants). 

 It must be noted that the solid friction coefficients are expected to vary with 

temperature, but the form of these variations is very ambiguous and difficult to 

predict as they strongly depend on the materials used and the specific conditions at 

the sliding contact interface (see for example Peterson et al., 1960). The temperature 

dependence of the (dry) friction coefficient is related to the formation of oxide films 

at higher temperatures. Those oxide films act as lubricants, reducing the friction 

between two rubbing surfaces, but are sensitive to temperature, load and time. Their 

presence is not persistent and may break down, leaving the surfaces unprotected with 

List of temperature-dependent material properties 

Thermal conductivity 

Specific heat 
Thermal properties 

Thermal diffusivity (as function of the thermal 

conductivity and the specific heat) 

Modulus of elasticity 

Shear modulus (function of the elasticity modulus) 

Hardness 

Yield stress in simple shear 

Mechanical properties 

Yield stress in simple tension/compression 
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an increase in friction and wear. In the important case of austenitic stainless steels, 

Peterson et al. (1960) reported that increasing the temperature did not cause a 

noticeable change in friction and in surface damage. The present author speculates 

that this may be attributed to the resistance of stainless steels to oxidation. After an 

extensive literature research, the present author concluded that there exists no 

universal model for the friction coefficient-temperature relation in either dry or wet 

friction, as this changes for every particular application and the performed 

experiments do not give satisfactorily consistent results. However, it has already 

been mentioned that, when the surface temperature exceeds a limit of around 150 ºC 

(or slightly higher if special lubricant additives are used), there is lubricant 

adsorption and a rapid increase of the friction coefficient, which can even be 

doubled. It is shown later that the calculated surface temperatures are high enough to 

cause serious problems (damage), even if the friction coefficient used in the analysis 

is the one for the low temperature regime, in other words for temperatures lower than 

150 ºC. 

 The inclusion of temperature effects on the properties is achieved via a 

correction loop in the computer code, as is explained in chapter 5. This adds 

significantly to the complexity of the algorithm, because pressures, tractions, sub-

surface stresses and surface deformations are all directly affected, and corrections are 

needed until convergence is achieved. All these effects are presented in the detailed 

example of chapter 5. At this point, it can already be revealed that the effect of 

variable thermal properties is generally small for typical engineering materials, 

especially those that have been heat-treated. Effects of greater importance are 

expected when temperatures reach the level of metallurgical phase change. For 

example, Earles and Powell (1967) report cases where the temperatures encountered 

in unlubricated sliding steel surfaces are so high that surface white layers appear 

(covered by oxide films), which, after removing the oxide films and using X-ray 

diffraction techniques, are shown to contain austenite. They, therefore, inferred that 

the surfaces must have attained a temperature in excess of 730 °C, in other words the 

martensite-to-austenite transformation temperature. 

 In general, when tempering reactions are absent, the dependency of the 

thermal properties to temperature is shown to be of limited importance. This can be 
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seen in the work of Storm (1951), Chu and Abramson (1960), and Ling and Rice 

(1966). Due to the increased complexity and non-linearity of the relevant equations, 

the inclusion of temperature-dependent thermal properties is rarely encountered in 

the literature. However, it is fully taken into account in this Thesis, coupled by 

thermal anisotropy in a non-linear model. 

 

 

 

 

3.8 Example 
 

The data used in the example of this section are the same as those used for the 

example of section 2.8. Those data are listed in tables 2.1-2.3. Interesting results are 

quoted in table 2.4. In the present example, all mechanical and thermal properties of 

the materials involved are considered independent of temperature and the materials 

isotropic. This is done in order to concentrate on basic results first. Table 3.2 shows 

the data used and the assumptions made for the present example. 

 In section 2.8, it is shown that the particle sticks to the surface with the higher 

friction coefficient, which is counterface 1. Therefore, the particle slides on 

counterface 2 with the sliding speed of the contact (V12). In this example, the focus is 

on counterface 2, assuming that counterface 2 receives only its share of the amount 

of heat that is produced at the interface with the particle. This means that α22 = 0. 

Moreover, particle’s internal heating is omitted at this stage. It is shown later that 

even in this case, the flash temperatures encountered are so high that they cannot be 

disregarded. In chapter 5, where none of the previous arbitrary assumptions is made, 

it is shown that the flash temperatures are actually much higher! 
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Table 3.2 

Data for the example and assumptions 

Assumptions (all assumptions are removed in chapter 5) 

(1) All mechanical and thermal properties are considered independent of 

temperature. 

(2) The materials are considered isotropic. 

(3) The heat generation inside the particle is neglected. 

(4) α22 = 0 (it is assumed that surface 2 receives only its share of the amount of heat 

produced at its contact with the particle – see explanations below). 

(5) Particle and surface cooling due to convection is omitted. (It is shown in chapter 

5 that it is negligible anyway.) 

(6) The solid pressure on the particle is calculated using the rigid-counterface model 

of section 2.6. That model does not account for the effect of the elastohydro-

dynamic pressure on the particle (in chapter 5, a completely new pressure model 

that removes all previous restrictions is developed and applied). 

Thermal conductivity of the particle at temperature θ0 57.7 W/(m·°C) 

Thermal conductivity of the counterfaces at temperature θ0 25.3 W/(m·°C) 

Thermal diffusivity of the particle at temperature θ0 1.5·10-5 m2/s 

Thermal diffusivity of the counterfaces at temperature θ0 6.6·10-6 m2/s 

Particle material Ferrite 

Counterface material Martensite 

Number or tracks on the particle Nt = 50 

All other data as in tables 2.1-2.3 

 

 

 Proceeding with the example, figure 3.3 shows the temperature history of 

four points, which lie on and below surface 2. 
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Figure 3.3 Temperature at selected points of counterface 2 versus time. 

 

 

The coordinates of the points (55,0,z) whose temperatures are shown in figure 3.3, 

are relative to the centre of the contact (x = 0, see figure 2.1) at time t = 0.6 ms, and 

the corresponding (maximum) temperatures are given in table 3.3. 

 

Table 3.3 

Temperature at selected points of counterface 2 at time t = 0.6 ms 

(bulk temperature θ0 = 60 °C) 

Point coordinates (x,y,z) [µm] Maximum temperature [°C] 

(55,0,0) 416 

(55,0,10) 353 

(55,0,50) 110 

(55,0,100)   62 
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The temperatures shown in the previous table are encountered at the time when the 

particle starts entering the outlet zone of the contact (figure 2.1). At a depth of 

100 µm below surface 2, the temperature is practically equal to the bulk temperature 

θ0, the latter being equal to 60 °C. This is in agreement with the Saint-Venant’s 

principle, known from the theory of Elasticity. It has been shown (see for example 

Boley and Weiner, 1960, section 6.8) that the equivalent of the Saint-Venant’s 

principle is also applicable in the area of Thermoelasticity. This practically means 

that the flash temperature field is stronger close to the heat source and becomes 

weaker away from the source, the weakening being fast (often noted as being 

“exponential”). It is obvious that this weakening is faster in transient heat conduction 

problems, like the one studied here, than in the corresponding steady-state ones, 

because of the time duration of the application of the heat source (infinite in the 

steady-state case, which allows the heat wave to “penetrate” the solids as far as 

possible). 

 According to figure 3.3, the frictional heating in the inlet zone of the contact 

is relatively weak. Severe heating starts essentially close to the entrance to the 

Hertzian zone, where the temperature increase is accelerated, especially for the near-

surface points at the exit of the Hertzian zone. This is due to the rapid decrease of the 

film thickness as the particle approaches the Hertzian zone, which results in a 

considerable increase of the level of pressure and traction forces on the particle, 

together with an increase of the area occupied by the particle (see figures 2.8 and 

2.9). Consequently, the amount of frictional heat produced is largely dependent on 

the width of the Hertzian zone. As a result, the frictional heating effects observed 

here are expected to be weaker in purely rolling contacts. 

 Figure 3.3 shows also the decrease of temperature with depth. High 

temperatures are encountered close to the surface, which means that the 

corresponding thermal stresses, added to the mechanical stresses from the 

compression of the particle and the lubricant pressure in the contact, will bring the 

high-risk area for yield closer to the surface, as is indeed shown in chapter 5. 

 The flash temperature effects are more clearly demonstrated in figure 3.4. 
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Partic
le sliding direction

Hertzian zone

 

 

Figure 3.4 Temperature distribution on counterface 2 as the particle 

   starts exiting the Hertzian zone of the contact. 

 

 

The particle slides along the x-axis, from the negative to the positive part. The plane 

defined by the axes x and y is located on counterface 2. In order to reduce the 

temperature-calculation times (which are in the order of hours), 90 % of the inlet 

zone was left out. It was actually found that this gives fairly accurate results (using 

the model developed in chapters 2 and 3) in the vast majority of cases studied.  

However, it is mentioned here in order to explain the relatively late “appearance” of 

the temperature rise, which should have taken place further outside the entrance of 

the Hertzian zone. Using the full model as shown in chapter 5, the omission of the 

inlet zone from the temperature calculations is no longer acceptable. This argument 

is made clear in the relative figures of the main example of chapter 5. 

 The maximum flash temperature (temperature above the bulk temperature) on 

counterface 2 is 356 °C. It is shown in chapter 5 that this is a significant 

underestimation, mainly owing to the assumptions (3) and (4) in table 3.2. It must be 

noted that in other cases tested by the author, the maximum flash temperature is 
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higher, depending on the size of the particle in relation to the central film thickness, 

as well as on the hardness of the particle relatively to the hardness of the 

counterfaces. It should be remembered that the present example refers to a particle 

that is 8 times softer than the counterfaces. For larger and harder particles, the 

temperatures may even exceed the melting point of the material of the counterfaces. 

A parametric study, which reveals the level of flash temperatures for various 

combinations of particle and contact data, is presented in table 3.4. Time t, shown in 

table 3.4, is the time elapsed from when the particle was first pinched to when it 

starts exiting the Hertzian zone of the contact. As can be realized from this table, 

significantly high flash temperatures can be encountered in very short times as a 

particle passes through the contact. 

 

 

Table 3.4 

Parametric study – Maximum flash temperatures 

D 

 

 

[µm] 

Hp 

 

 

[HV] 

V12 

 

 

[m/s] 

µ1 µ2 ε hc 

 

 

[µm] 

t 

 

 

[ms] 

Maximum flash 

temperature on 

counterface 2 

[°C] 

30 100 5.0 0.20 0.15 0.5 2.2 0.13 549 

30 100 1.0 0.25 0.20 0.5 0.7 0.59 465 

30 200 1.0 0.20 0.15 0.5 0.7 0.59 371 

30 100 1.0 0.20 0.15 0.5 0.7 0.59 350 

30   80 1.0 0.20 0.15 0.5 0.7 0.59 344 

30 100 0.5 0.20 0.15 0.5 0.4 1.16 262 

30 100 1.0 0.15 0.10 0.5 0.7 0.59 229 

20 100 1.0 0.20 0.15 0.5 0.7 0.52 207 

10 100 1.0 0.20 0.15 0.5 0.7 0.40   38 

10   80 5.0 0.15 0.10 0.5 2.2 0.08    8 

10   80 5.0 0.15 0.10 0.5 2.2 0.08     8 

Other data used in the study: 

Sr = 1, R1 = 20 mm, R2 = 28 mm 



§ 3.8 Example  215

 Coming back to the main example studied in this section, it is interesting to 

have a 2-dimensional view of the temperature distribution of figure 3.4. Figure 3.5 

shows a contour map of isothermal lines, based on the 3-dimensional temperature 

field. From figure 3.5, the core of the heated zone can readily be seen and compared 

with the location of the particle, which, in the figure, is denoted by a white circle. 

The outer isothermal line corresponds to a temperature close to the bulk temperature 

(60 °C). It is immediately noticeable that there is a fast development of a high-

temperature spot on counterface 2, with dimensions 200 µm × 200 µm, where the 

temperature is risen from 60 °C (the bulk temperature) to a maximum of 416 °C in 

just 0.6 ms.  
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Figure 3.5 Contour map of the temperature distribution on surface 2 

   as the particle starts exiting the Hertzian zone of the contact 

   (particle denoted by the white circle). Temperatures shown 

   are in degrees C. 
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 An important observation is that the severely heated area extends outside the 

particle, especially behind the particle but also laterally and in front of the leading 

edge of it. This obviously affects the lubrication conditions around the particle. It is 

shown (see the main example of chapter 5) that the surface temperatures are high 

enough to affect the local temperature of the lubricant. However, it is also shown that 

the heat convection coefficient is very small and, hence, the heat convection from the 

surfaces to the lubricant is not significant. Nevertheless, this phenomenon may 

become significant when more than one particle is trapped in the contact, in which 

case the individual heat waves are combined and amplified. The latter mechanism 

was proposed by Chandrasekaran et al. (1985) to explain the scuffing failures 

encountered during standard 4-ball machine tests with contaminated oils. However, 

at that time, there was no available theoretical model to test their proposition. More 

on this follows in chapter 5. 

 These results suggest that the effect of frictional heating of the sliding 

counterfaces, caused by the squashing of a debris particle, is very important in 

understanding the thermal aspects of scuffing observed in failed machine elements 

such as gears, cams and followers, bearings, etc. It is known that scuffed surfaces 

exhibit global melting marks. On the other hand, lightly scuffed surfaces often 

exhibit spots of white color (although covered by oxide films), known as “white-

layers”, where the white color shows that the material underneath has undergone a 

metallurgical phase change (see for example Earles and Powell, 1967). Based on the 

findings of the present Thesis, it is likely that some of those spots are the remains of 

the catastrophic presence of rather soft debris particles. The argument is that hard 

particles tend to retain their initial shape, causing abrasion (long scratches, grooving) 

rather than a more-or-less localized spot. On the other side, soft-ductile particles are 

flattened during compression in the inlet zone of the contact, become thin disks, and 

as such enter the main contact zone (Hertzian zone), producing a stress field, which 

has its maximum strength near the exit of the Hertzian zone, where the core of the 

heated area is located (figure 3.5). Therefore, the damage to the counterfaces is more 

likely to be localized in a relatively narrow area than to be extended in an elongated 

zone. Taking into account the motion of the particle combined with its lateral 

expansion, these spots must have the appearance of a falling water drop or a pencil 

(with its head created by the initial lateral expansion of the particle in the inlet zone 

of the EHD contact), having a different color than their neighborhood due to the high 
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local frictional heating. The author was pleasantly surprised to discover (after the 

analytical work of this Thesis had been completed) a similar description in the 

excellent book of Tallian (1992, see section 12.4 – case 3). Such effects can also be 

seen in the work of Zantopoulos (1998), who experimentally studied scuffing in 

tapered roller bearings. Zantopoulos’ paper contains photographs showing white-

layers, which are the result of high flash temperatures (in excess of 700-800 °C), 

followed by quick cooling to room temperature. The high flash-temperature incidents 

were part of scuffing failure, where material had been adhered to the Cone Rib 

and/or the Roller End of the tapered roller bearings. Although Zantopoulos has not 

directly related these incidents with debris particles, he speaks of teardrop dent 

formations observed on the scuffed surfaces, which have a smooth shiny appearance. 

Based on the findings of the present Thesis, this is a clear indication of squashing of 

soft ductile debris between two sliding surfaces. Whether these debris are soft/ductile 

before compression or they become soft during shearing/squashing (due to high 

frictional heating) is not of importance. What is important is the effect of the over-

rolling of such debris in sliding contacts, and this is in agreement with the analytical 

findings of this Thesis. More information on this follows in the example of chapter 5. 

 Moreover, surface 1 (the surface to which the particle sticks) is expected to 

receive a significant amount of heat owing to particle’s extrusion speed and the heat 

transferred from the particle to it. The latter is a part of the heat produced at the 

interface of particle and surface 2, as well as part of the particle’s internally 

generated heat. If both counterfaces have thermal properties with correspondingly 

equal magnitudes, then it is shown in chapter 5 that the difference of the maximum 

flash temperatures of the two counterfaces is of the order of 20 % - 40 %, with 

counterface 1 receiving most of the heat. Therefore, the counterface to which the 

particle sticks is the hotter one. For different thermal properties, the latter result 

could be slightly altered. 

 The effect of particle’s internal heating is not negligible either. If it is taken 

into account in the calculations, the resultant maximum flash temperature in the 

quoted example is 8 % higher for surface 1 and 5 % higher for surface 2. More on 

this and on the effect of surface and particle cooling due to convection follows in 

chapter 5. 
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 As already mentioned, the effect of temperature-dependent thermal properties 

on the flash temperature results is relatively weak. This is shown in chapter 5, but a 

first indication is presented in figure 3.6. The two flash temperature curves in that 

figure are for point (55,0,0) µm of counterface 2 and refer to different bulk 

temperatures: 60 °C and 500 °C. The difference in the calculated maximum flash 

temperatures for the two cases is only 2 °C, which is quite low in comparison with 

the maximum flash temperatures, which are of the order of 356 °C. This means that 

even if the maximum flash temperature in our example were 500 °C (and not 356 

°C), omitting the change of thermal properties with temperature would lead to 

insignificant errors. Similar results have been reported by other researchers. See for 

example Storm (1951), and Ling and Rice (1966), both presenting detailed analyses. 
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Figure 3.6 Flash temperature at a point of counterface 2 versus time elapsed  

  since the particle was pinched, for two different bulk temperatures. 
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3.9 Conclusions 
 

In the present chapter, a model has been developed to simulate the frictional heating 

process when a soft-ductile debris particle is squashed between two counterfaces in 

an elastohydrodynamic rolling-sliding contact. The model covers the following 

issues: 

• Heat generation due to friction between the particle and the counterfaces. 

• Internal heat generation of the particle due to its plastic compression. 

• Heat partition between the counterfaces and the particle. 

• 3-dimensional heat conduction in the counterfaces. 

• Heat convection from the counterfaces and the particle to the lubricant. 

• Transient variations of all mechanical and thermal properties of the materials 

involved in the process (counterfaces and particle) due to the temperature 

changes. 

• Thermal anisotropic effects, considering thermally orthotropic materials. 

 

 It is shown theoretically that apart from the obvious mechanical contribution 

of debris particles to the damage of lubricated contacts, there exists a thermal 

contribution, which can be very important in the case where there is relative sliding 

between the two cooperating counterfaces in the contact, and could – sometimes all 

alone – explain the catastrophic effects of soft particles in machine elements like 

gears, bearings, cams and followers, etc. The flash temperatures encountered in 

contaminated elastohydrodynamic contacts (see table 3.4) could be high enough as to 

cause local melting of the materials involved, resulting in a failure mechanism that 

resembles scuffing, even if the particles are small and much softer than the 

counterfaces, as in the example of section 3.8. The variation of the thermal properties 

of both counterfaces and particle has been accounted for and the first indication is 

that it is insignificant (for the temperature levels of this study, meaning for 

temperatures at the order of 500 °C), as has already been shown by other researchers 

in the past. In chapter 5, it is shown that the same conclusion holds for more severe 

conditions where the temperatures may exceed 1500 °C). It is noted again here that 

all material properties used in the example are typical of engineering steels, so that 

the results and conclusions have a general applicability. 
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 Here follows a summary of the main conclusions drawn after a large number 

of examples studied. 

(1) The friction between the particle and the counterfaces results in the rapid 

generation of heat, which is usually high, even when the particle is small and 

much softer than the counterfaces. Consequently, high flash temperatures are 

encountered in the contact (figure 3.4), which may cause metallurgical changes 

and even local melting of the materials of the counterfaces and/or the particle. 

(2) If the particle survives the heat and reaches the outlet zone of the contact, it will 

have produced a hot spot in the Hertzian zone (figure 3.5), with dimensions 

comparable to the average diameter of the squashed particle disk. 

(3) The magnitude of the peak flash temperature is directly dependent on the central 

film thickness and the width of the Hertzian zone. The central film thickness 

obviously affects the level of pressure on the particle and through this, the 

traction forces and the amount of frictional heat produced (equation (3.3)). The 

width of the Hertzian zone affects the time the particle will spend sliding under 

high pressure/traction conditions (see figure 3.3). The latter does not affect purely 

rolling contacts (contacts without sliding motion). 

(4) There is a temperature difference between the counterfaces after frictional 

heating has ceased. First calculations show that the counterface where the particle 

sticks is generally 20 % – 40 % hotter than the other counterface (not applicable 

in purely rolling contacts). 

(5) The variation of thermal properties with temperature has essentially insignificant 

effect on the level of the flash temperatures. A preliminary indication is shown in 

figure 3.6; more information follows in chapter 5. 

(6) Particle’s internal heating accounts for additional heating of the counterfaces. For 

the typical example studied in section 3.8, the maximum flash temperatures are 

raised by 8 % for surface 1 and 5 % for surface 2. 

(7) As a final conclusion, flash temperatures owing to frictional heating of rolling-

sliding elastohydrodynamic contacts during the passage of soft debris particles 

can be high (in the order of hundreds of degrees C). Hence, debris particles can 

often be responsible for a high-heat failure mechanism, which, for temperatures 

of the order of the melting point of the materials, can be attributed as local 

scuffing. 
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 Finally, it is important to report that, using the present model, is was found 

that very soft particles (10 times softer than the counterfaces) could produce 

significant amounts of frictional heat if they have a diameter of at least 5 to  

10 µm, assuming a solid-friction coefficient in the order of 0.2 and a film thickness 

around 0.5 µm. Consequently, very soft particles, smaller than around 5 µm, cannot 

be held responsible – under typical operating conditions – for significant frictional 

heating (see the bottom two examples in table 3.4). 
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CHAPTER 4 

 

THERMOELASTIC ANALYSIS OF THE 

SQUASHING OF A SOFT PARTICLE IN AN 

ELASTOHYDRODYNAMIC LINE CONTACT 

 

 

 

4.1 Introduction 
 

According to chapter 3, the passage of a debris particle through a concentrated 

contact is associated with the encounter of heat, arising from the friction between the 

particle and the counterfaces. It was shown that the heat could be high enough as to 

result in high flash temperatures in the contact, which are often so high that local 

damage in the form of metallurgical changes or even material melting could occur. 

Although one could indirectly conclude that damage is expected when the surface 

temperature exceeds a known value, this conclusion lacks a detailed description of 

the way that damage is going to appear and progress.  

 In order to assess the risk of damage in a strictly mathematical manner, the 

mechanical and thermal stresses arising from the specified loading must be 

calculated, followed by a yield check. The mechanical part of the loading is known, 

because the solid pressure between the particle and the counterfaces as well as the 

elastohydrodynamic pressure separating the two counterfaces are both approximately 

known. Moreover, the temperature field associated with each counterface is also 

known (see chapter 3), which means that thermal stresses can be calculated through 

an appropriate analysis. However, the situation is complicated by the fact that the 

produced frictional heat causes thermal expansion of the counterfaces, which alters 

the solid pressure between the particle and the counterfaces and vice versa. Other 

complexities arise from the fact that the thermal and mechanical properties of the 
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particle and the counterfaces are temperature dependent. All these account for a 

complicated thermomechanical system, which needs to be modelled partially, before 

trying to understand it globally. More specifically, the relations of the various parts 

of the whole model must be postulated mathematically. These relations are shown 

schematically in figure 4.1. 

 

 

 

 

Figure 4.1 Flow chart of the interrelation of the thermomechanical effects. 
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 It is the purpose of this chapter to provide a complete mathematical analysis 

for the calculation of the thermoelastic stress-strain-displacement fields in the most 

general way possible. This has been done in various ways by other researchers in the 

past. General results and methods are employed in the papers of Barber (1972, 

1980a), and Barber and Martin-Moran (1982). Interesting theoretical contributions 

have been made by Korovchinski (1965), Mercier et al. (1978), Tseng and Burton 

(1982), Ju and Huang (1982), and Kulkarni et al. (1991, FEM thermo-elastoplastic 

analysis). However, most of the previous studies contain geometrical and/or loading 

simplifications that restrict the applicability of the results obtained. Such 

simplifications include the assumption of constant sliding velocity of the rubbing 

surfaces, plane stress or plain strain, ideal geometrical shapes (like spheres, or 

rectangles) for the sliding bodies, and simplified (arbitrary) heat partitioning, such as 

the assumption that all of the frictional heat goes to one body while the other behaves 

as an insulator. Moreover, many studies are overcomplicated by the use of tensor 

algebra or integral equations and transformations, which, although being neat 

mathematical tools, could be avoided in favor of a more simple and straightforward 

approach from an engineer’s rather than a mathematician’s point of view. Such a 

“simple” approach is feasible, as is shown later in this chapter, where the only 

mathematical techniques used are the differentiation and numerical integration of 

multivariable functions. 

 Starting with the formulation of the mechanical stress analysis, there are 

many publications dealing with the Theory of Elasticity where the mathematical 

problem is attacked in various analytical ways, as with Tensorial, Differential or 

Complex analysis. However, the complete equations of the Contact Mechanics 

aspects of Elasticity were very early given in differential notation by (independently) 

Boussinesq and Cerruti. A presentation of those equations in differential form can be 

found in the excellent book of Love (1944). Johnson (1985) presents a more useful 

form of the same equations. However, all these presentations are in a coupled 

differential form, which prevents a researcher/reader from straightforward analytical 

calculations. At the time of writing this Thesis, the author was not aware of a 

publication listing the complete Boussinesq-Cerruti equations in the most developed 

form possible. Therefore, the author undertook the awkward task of expanding the 

complex differential equations into a more usable analytic form, as is shown in 

section 4.2.
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 Thermal stress analysis on the other hand is equivalently laborious. There is, 

again, a great number of publications addressing various problems of thermal 

stressing, most of which are mathematically challenging. A good source of general 

information, albeit not for the mathematically incompetent, are the books of Boley 

and Weiner (1960), and Nowacki (1986). The general problem of Thermoelasticity is 

one of considerable complexity, resembling the solution of the general Navier-Stokes 

equations in Fluid Mechanics. The problems arise when attempting to solve for the 

coupled thermal and elastic stress fields. The coupling of the thermal and elastic 

stress fields becomes unavoidable when the rate of change of the thermal loading 

and, thus, the rate of movement of the flash temperature field, is close to or exceeds 

the speed of sound in the solids under consideration. Thankfully, the majority of 

industrial applications do not involve such high-speed processes. This means that, in 

the latter case, the simplified quasi-static theory can be used with good 

approximation. 

 Finally, on the question of the necessity of a thermal stress analysis, the 

answer comes very easily: the magnitude of the flash temperatures caused by the 

friction between a particle and the counterfaces in an elastohydrodynamic contact 

suggests that the thermal stresses should be relatively high. This is indeed shown in 

several publications. Marscher (1982b), in a general study of thermal versus 

mechanical effects in high-speed sliding, showed that thermal stresses were higher 

than the corresponding mechanical stresses in the majority of the rub events studied. 

More pronounced were the differences found by Ju and Huang (1982), again in favor 

of the thermal stresses. All this suggests that thermal stresses caused by the 

squashing of debris particles have a very important role in the failure of machine 

elements. In the next chapter, it is actually shown that thermal stresses increase 

dramatically the risk of surface damage and often have the principal role when it 

comes to the combined action of thermal and mechanical stress fields. 
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4.2 Mechanical elastic stress analysis 
 

According to the model of section 2.4 (figure 2.5), a soft and ductile particle is being 

squashed between two parallel counterfaces, which have a vertical (approaching) and 

a horizontal (sliding) velocity, relatively to each other. Because of the smallness of 

the particle, as compared to the counterfaces, and the level of stresses developed in 

the contact, the counterfaces can be seen as elastic half-spaces. 

 Assuming surface A is one of these two half-spaces, Figure 4.2 shows surface 

A together with the coordinate system notation as well as the surface pressure and 

tractions, which are used as part of the boundary conditions. The coordinate system 

Oxyz is fixed on surface A and travels in space with the tangential velocity of 

surface A. The origin O is suitably located as the point where the particle first comes 

in contact with both counterfaces and can be found following the analysis of sub-

section 2.3.2. 

 

 

 

Figure 4.2 System of coordinates and notation. 

 

 

 In order to calculate the subsurface stress field, owing to a general surface 

loading as in figure 4.2, the Boussinesq-Cerruti equations are applied. These 

equations can be found in differential form in Johnson (1985). In order to be used in 

the calculations, the equations are further developed into more useful analytical 

relations. This task proved very cumbersome because of the amount of the symbolic 

A 

p 

qy qx 
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calculations involved. However, the author repeated the algebraic manipulations 

three times in order to ensure the correctness of the results. 

 Following Johnson (1985), the subsurface stresses are given by the following 

equations: 
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where G is the shear modulus. The displacements are given by the following 

equations: 

 























∂∂
∂+∂∂∂

∂+∂∂
∂⋅

−





∂∂
∂+∂∂

∂+∂
∂⋅⋅+∂∂

∂−∂
∂⋅

⋅⋅⋅=

2
1

3
1

3

2
1

3

1
2

1
2

2
1

2
1

2

2
1

2

22

4

1

zx

H

zyx

G

zx

F
z

zx

H

yx

G

x

F

zx

H

z

F

G
ux

ν

π
                       (4.7) 

 

 



§ 4.2 Mechanical elastic stress analysis  

 

228

 























∂∂
∂+∂∂

∂+∂∂∂
∂⋅

−





∂∂
∂+∂

∂+∂∂
∂⋅⋅+∂∂

∂−∂
∂⋅

⋅⋅⋅=

2
1

3

2
1

3
1

3

1
2

2
1

2
1

2
1

2

2
1

2

22

4

1

zy

H

zy

G

zyx

F
z

zy

H

y

G

yx

F

zy

H

z

G

G
u y

ν

π
                      (4.8) 

 

 

( )























∂
∂+∂∂

∂+∂∂
∂⋅

−





∂
∂+∂∂

∂+∂∂
∂⋅⋅−+∂

∂

⋅⋅⋅=

3
1

3

2
1

3

2
1

3

2
1

2
1

2
1

2

2
1

2

21

4

1

z

H

zy

G

zx

F
z

z

H

zy

G

zx

F

z

H

G
uz

ν

π
                                (4.9) 

 

where 
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( ) ρρ −+⋅≡Ω zz ln                                                                                              (4.13) 

 

and 
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 In order to calculate the stresses, it is necessary to find the spatial derivatives 

of the displacements. Using equations (4.7)-(4.9), the results are as follows: 
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In order to calculate the derivatives of F1, G1 and H1, the corresponding derivatives 

of Ω (equation (4.13)) have to be evaluated first. The lengthy results are listed below. 
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 All the previous lengthy expressions must be fitted to the equations giving the 

stresses. Numerical integration is then applied using the prescribed surface loading. 

More about this integration and the construction of a suitable grid follow in section 

4.4, after the presentation of the thermal stress analysis in the next section. 

 

 

 

 

4.3 Thermoelastic stress analysis 
 

As is explained in the introductory section 4.1, the general problem of 

Thermoelasticity is one of considerable mathematical difficulty because stress/strain 

and temperature changes are interrelated. Moreover, sudden (or shock) heat waves 

cause inertia effects that must be taken into account before attaining a complete 

solution. 

 If variable stresses are applied in an elastic body, the resulting displacements, 

however small, are associated with internal friction of the body and, thus, a 

temporary increase of the entropy of the system. The internal friction produces heat, 

which is dissipated in the body. This heat produces thermal stresses, which finally 

cause the body to thermally expand. Therefore, a boundary stress loading results in a 

temperature increase that causes further internal stresses translated as thermal 

expansion. This example shows the coupling effect, which is inherent in the energy 

equation of Thermoelasticity. 

 On the other hand, a heat wave is associated with a thermal-stress wave, 

whose rate of change is, generally, proportional to the rate of change of the heat 

wave. Furthermore, the thermal-stress wave produces a thermal-displacement wave. 

Thermal-displacement waves are forms of inertial waves and, therefore, result in 

inertial stresses (Newton’s law). The inertia effects are obviously more intense as the 
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rate of change of the heat wave increases (due to either temperature increase or 

movement of the temperature field). 

 Boley and Weiner (1960, chapter 2 of their book), give a rigorous analysis of 

the relative weight of both the coupling and inertia effects. They showed that for 

common industrial applications, the coupling effect is of minimal importance. 

Similarly, when the rate of temperature change is sufficiently small, inertia effects 

can be disregarded. Practically, this means that inertia effects are very small as long 

as the rate of temperature increase is much lower than the speed of dilatational waves 

in a solid. This can be tested mathematically through the following criterion: 

 

where υθ is the speed of the temperature increase, υe is the speed of dilatational 

waves, ν is the Poisson ratio, E is the modulus of elasticity, and ρm is the material 

density. In our particular application, using the typical example of section 2.8 

(ν = 0.3, E = 207·109 Pa, ρm = 7850 kg/m3), the speed of dilatational waves is 

calculated to be υe ≅ 7745 m/s. Using the results of the example of section 3.8 (see 

figure 3.4), the temperature field on surface 2, in the Hertzian zone of the contact, 

moves with a speed equal to the relative speed of the particle on the surface, which is 

1 m/s (speed Vp2 in figure 2.11). Of course, the strength of the field varies in time, 

but for the sake of this example, it can be assumed that the speed Vp2 is a 

representative speed of the temperature field. Therefore, υθ ≅ 1 m/s, which is 

significantly lower than υe (≅ 7745 m/s). Hence, ignoring the inertia effects is fully 

justified. 

 Following the previous explanations and clarifications, the analysis can now 

proceed with the solution of the 3-dimensional, uncoupled, quasi-static thermoelastic 

problem. The general, thermoelastic stress-strain equations are written as follows 

(Timoshenko and Goodier, 1970): 
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where σ stands for normal stress, τ for shear stress, ε for normal strain, and γ for 

shear strain. Moreover, E is the modulus of elasticity, G is the shear modulus, α is 

the coefficient of linear thermal expansion, and T is the temperature increase. The 

left parts of the thermoelastic stress-strain equations (4.52) refer to the total strains, 

which are made of two parts; 

(1) A term (α·T), owing to the change of volume of the body following a temperature 

change. It is noted that for an isotropic body, this volume change results in 

normal strains only (no angular distortion). 

(2) A term required to ensure the continuity of the body and to satisfy any external 

loads. 

 The thermoelastic displacements u, υ and w are related to the normal strains 

through the following equations: 
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                                                                            (4.54) 

 

Goodier (1937) proposed a neat method to solve the thermoelastic problem, similar 

to the one used in elasticity through the application of the Airy stress functions. In a 

similar fashion of an Airy stress function, Goodier used what is known as 

“thermoelastic displacement potential”, denoted by “ψ”. Generally, ψ is a function of 

the spatial coordinates and time: 
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( )tzyx ,,,ψψ =                                                                                                      (4.55) 

 

By definition, the thermoelastic displacements are related to the thermoelastic 

displacement potential through the following equations: 
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Using equations (4.54) and (4.56), equations (4.52) give the following result: 
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where 2∇  is the Laplacian operator 
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It can easily be shown that equations (4.57) are satisfied if ψ is taken to be the 

solution of the following equation: 
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 The heat-conduction equation is written as follows: 
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T
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where λ is thermal diffusivity. Differentiating equation (4.59) with respect to time 

and using equation (4.60), it is derived that 
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which has a particular solution 
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Integration of equation (4.62) yields 
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The integration function c(x,y,z) in equation (4.63) must satisfy equation (4.59). 

Thus: 
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which has a solution c(x,y,z) = 0 because T(x,y,z,0) = 0 (the flash temperature, or 

temperature increase above the bulk temperature, is initially zero). Finally: 

 

( ) ( ) ttzyxTtzyx
t

′⋅′⋅⋅⋅
−
+= ∫ d,,, 

1

1
,,,

  

0  

λαν
νψ                                                        (4.65) 

 

More information on the above method can be obtained from Goodier (1937), Boley 

and Weiner (1960, section 3.4), and Timoshenko and Goodier (1970, section 162). 

 It must be noted that the previous analysis gives a particular solution, which, 

in general, results in non-zero surface thermal stresses. This means that surface 

thermal-stress components ( ) ( ) ( )ψψψ ττσ thermal,thermal,thermal,  and  , zxzyz  are generally found to have 

non-zero values. Since the heated surfaces must be free of stresses (the problems of 

thermal and mechanical loading are initially solved independently, which means that 

for the thermal stress problem, the surfaces are free of stresses), an equal and 

opposite surface loading is artificially applied, in order to remove these non-zero 

thermal stress components (see step 5 below). 
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 The whole procedure to solve the thermoelastic problem is summarized 

below. The procedure is of course applied in our particular case, that being the 

squashing of a soft particle in a line, elastohydrodynamic contact. 

 

 

Step 0 

The motion and behaviour of the particle are found by applying the preliminary part 

of the model, presented in chapter 2. This involves the calculation of solid pressure 

and traction between the particle and the counterfaces. Following that, the flash 

temperature fields of the counterfaces are calculated (chapter 3). The temperature 

calculations take place in 3-dimesional grids, covering the heated space in each 

counterface. (More on this follows in the next chapter.) 

 

 

Step 1 

For each node of the grids, the thermoelastic displacement potential is calculated 

from equation (4.65). 

 

 

Step 2 

For each node of the grids, the thermoelastic displacements are calculated from 

equations (4.56). 

 

 

Step 3 

For each node of the grids, the normal thermoelastic strains are calculated from 

equations (4.54), whereas the shear strains are calculated from the following 

equations: 
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Step 4 

For each node of the grids, the thermoelastic stresses are calculated by the following 

equations: 

 

( ) ( ) TGLGL izyxi ⋅⋅⋅+⋅−⋅⋅+++⋅= αεεεεσ 232      , i ↔ x, y, z                  (4.67) 

 

jj G γτ ⋅=      , j ↔ xy, yz, zx                                                                                 (4.68) 

 

where the Lamé constant L is 
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Step 5 

Finally, a surface loading yx qqp ,,  is applied, such that 

 

( ) ( ) ( )ψψψ ττσ thermal,thermal,thermal,    ,      ,   zyyzxxz qqp −=−=−=                                                (4.70)  

 

in order to remove any surface thermal stresses that are a byproduct of the current 

method. The subsurface stresses due to this surface loading are calculated according 

to the general method (Boussinesq-Cerruti equations) of section 4.2. After this step, 

the heated surfaces are guaranteed to be free of thermal stresses. 
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4.4 Overall-stress problem 
 

The calculation of the overall stresses is a matter of an algebraic addition of the 

mechanical and thermal stresses, provided that both are below the elastic limit. This 

takes place at each node of the grids and can be accompanied by an appropriate yield 

check to test if there are any areas of plastic strains. 

 The set-up of a grid is such that a  z = constant  layer (see figure 4.2) has as 

few nodes as is necessary for satisfactorily accurate results. However, this rule of 

thumb is applied only for the flash temperature and thermal-stress calculations, 

because these calculations are by far the most time-consuming, taking more than 

50 % of the overall computational time for the complete solution of the problem. 

However, the solution of the Boussinesq-Cerruti equations (section 4.2) is done using 

vastly denser surface grids, in order to improve the accuracy of the necessary 

integrations (see equations (4.10)-(4.12)). Thus, for all mechanical-stress 

calculations, the surface grids used are constructed from the initial grids (used for 

temperature and thermal-stress calculations) with new nodes introduced among the 

old ones, as is shown in figure 4.3. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 "Old" nodes (for temperature and thermal-stress 

          calculations) and interpolation (new) nodes for 

          increasing the mechanical-stress calculation accuracy. 
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 There are 2500 new nodes for every set of four neighboring old nodes as in 

figure 4.3. The total number N of the surface nodes is given by the following 

equation: 

 

 250012511
2

2500 oldold
old −⋅=+


 −⋅= NN

N
N                                                (4.71) 

 

where Nold is the number of the old nodes. For example, if the initial surface grid 

contains 50×10 = 500 old nodes (used for temperature and thermal stress 

calculations), the total number of surface nodes (used for mechanical and overall 

stress calculations) is N = 1251·500 – 2500 = 623000. 

 The stresses at every new node are calculated by bilinear interpolation, using 

the stresses at the four surrounding old nodes. For example, using figure 4.3, the 

stress at the new node 5 is: 
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whereas (x,y) denote the coordinates of a node. 

 

 

 

 

4.4.1 Boundary conditions for the overall-stress problem 
 

The boundary conditions of the overall-stress problem are as follows. 

(1) The solid pressure between the particle and the surfaces. 

(2) The surface shear stresses due to particle’s motion relatively to a counterface. 
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(3) The elastohydrodynamic pressure between the counterfaces. This is satisfactorily 

approximated by a Hertzian pressure distribution in the Hertzian zone of the 

contact. 

 

 It is noted here that surface elastohydrodynamic tractions in the case of 

sliding contacts are neglected, as these are significantly lower than all the other 

surface stress components of the particular problem. In order to realize this, it 

suffices to say that a typical elastohydrodynamic traction coefficient is in the order of 

0.06, whereas the friction coefficient between the particle and a counterface is in the 

order of 0.1-0.2, assuming that the lubrication between the particle and a counterface 

is boundary. Moreover, the particle occupies a significant area when being in the 

Hertzian zone of the contact, where the elastohydrodynamic tractions have (in the 

absence of the particle) their maximum strength. Thus, in the vicinity of the particle, 

the counterfaces sense (mainly) the effects of the presence of the particle rather than 

any elastohydrodynamic shearing effects. 

 The boundary conditions (1) and (2) are applicable in the area occupied by 

the particle at any time during particle’s motion in the elastohydrodynamic gap. 

Condition (3) is applicable mainly in the Hertzian zone of the contact, excluding the 

area occupied by the particle. Therefore, a surface loading of the form 0,0,p  is 

applied on each counterface, where 
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whereas W is the load per unit length of the line contact, b is the Hertzian contact 

semi-width (equation (2.2)), xp is the distance of the centre of the particle from the 

centre of the Hertzian zone of the contact, and R is the radius of the deformed (disk 

shaped) particle (equation 2.20)). However, this means that a generalized integration 

( +∞<<∞− y ) along the y-axis must be performed. In order to avoid this 

computation, the following alternative method is applied; from Johnson (1985, pages 
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102-104), the stresses at a general point (x,z), produced by a Hertzian line loading as 

that of equation (4.74), are as follows: 
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where 
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The previous stress components can now be superimposed to those found by the 

mechanical loading (solely due to the presence of the particle) and the thermal 

loading of the counterfaces. Finally, the complete sub-surface stress field is obtained 

after accounting for the area occupied by the particle, which must be free of fluid 

(elastohydrodynamic pressure). The latter is achieved by applying a surface loading 

0,0,p , where 
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(notice the minus sign on the right-hand side of equation (4.80)). What is done in 

essence is to apply an opposite Hertzian loading (tension instead of compression) 

over the area occupied by the particle.  

 Finally, the overall stresses are:
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4.4.2 Overall strains and displacements 
 

Having calculated the overall stresses, the overall normal strains can now readily be 

calculated from the well-known Hookean equations of linear isothermal Elasticity: 
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 The overall displacements are calculated as follows: 
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where ∆x, ∆y and ∆z are the spatial steps of the grid. The discretized equations (4.83) 

are rearranged to solve explicitly for the unknown displacements. 

 The dimensions of the grid are chosen such that the grid is larger than the 

practically heated space, which is considered as the space with a flash temperature of 
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at least 1 °C. Moreover, the grid is large enough to ensure that the displacements at 

its boundaries (excluding the heated surface) are almost zero. More specifically, if 

Nx, Ny and Nz are the initial numbers of grid nodes along axes x, y and z, 

respectively, such that 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny  and  1 ≤ k ≤ Nz, then the following 

boundary conditions are imposed: 

 

0
zyx1 ====

==== NkNjNii wuu υ                                                                              (4.82)  

 

where 
zNkw

=
 is the w-displacement at the bottom of the heated space, away from the 

heated surface that lies at  z = 0. Equations (4.82) apply the Saint-Venant’s principle 

of stresses and strains becoming “exponentially” weaker away from the contact zone. 

In reality, and for mathematical consistency, the overall displacements calculated 

here are relative to the corresponding displacements at the boundaries of the grid 

(excluding the heated surface), which are taken as a suitable reference point. 

 

 

 

 

4.5 Yield check 

Having calculated the overall stresses throughout the solids, it is straightforward to 

check for plastic deformations. For this, the Maxwell-Huber-von Mises criterion, 

which is widely known as the “von Mises” criterion, is considered the most suitable 

choice. This criterion is expressed as follows: 

 

 

 

 

where Y is the yield stress in uniaxial tension (or compression, depending on the 

loading situation, although for metals, there is no significant difference). 

 The von Mises criterion is better suited for ductile rather than brittle materials 

and experiments with metals have shown the slight superiority of the von Mises 

criterion over its usual contender – the Tresca criterion (see Khan and Huang, 1995, 
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section 4.3.3). Therefore, the von Mises criterion is the best choice in our case 

(metals) and is always the preferred one in this Thesis. 
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CHAPTER 5 

 

REFINEMENT OF THE MODEL AND GENERAL 

APPLICATION 

 

 

 

5.1 Introduction 
 

Chapters 2-4 of this Thesis are devoted to the development of a general model to 

study the thermo-elasto-plastic problem of the squashing of a soft and ductile particle 

in a line elastohydrodynamic contact. Chapter 2 deals with the particle’s kinematics 

inside the contact gap and shows that, in the cases of contacts that involve sliding, 

the particle sticks to the counterface with the higher friction coefficient immediately 

after being pinched, thus sliding on the other counterface along the inlet and the 

Hertzian zone of the contact. The study is restricted to soft and ductile particles, 

which leaves space to consider the counterfaces as being rigid. In reality, the 

counterfaces are deformable, and their deformation causes some of the pressure 

between them and the particle to be released. Moreover, the elastohydrodynamic 

pressure in the contact affects the particle when the latter comes close to the Hertzian 

zone and the effect is transferred to the pressure and traction between the particle and 

the counterfaces. These effects have so far been neglected as the solid pressure 

model used until now is that presented in section 2.6, which omits counterface 

deformations and the effective elastohydrodynamic pressure on the particle. 

 In the present chapter, the pressure model of section 2.6 is replaced by a new 

and more detailed model to eliminate the previously mentioned inadequacies. The 

improvements reflect the effect of both mechanical and thermal stresses on the 

surface displacements, which are coupled in a non-linear relation to resolve the 

pressure between the particle and the counterfaces. The complete model is then 

presented in its full potential through a detailed example, which includes all the 
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3-dimensional temperature and stress/strain/displacement calculations. In summary, 

the model includes the following: 

• Calculation of the motion of a trapped particle in a contact (chapter 2). 

• Calculation of the heat produced due to friction between the particle and the 

counterfaces. Heat partitioning between the counterfaces (chapter 3). 

• 3-dimensional heat conduction calculations in the counterfaces, assuming 

thermally anisotropic (orthotropic) solids (chapter 3). 

• Calculation of the heat losses from the particle and the counterfaces to the 

lubricant (chapter 3). 

• 3-dimensional mechanical and thermal stress/strain/displacement calculations for 

both counterfaces (chapter 4). 

• Checking for plastic deformations in the counterfaces and, finally, assessing the 

risk of damage in the contact, due to the presence of the particle (chapter 4). 

 

 

 

 

5.2 Solid pressure on the particle – an advanced model 
 

In section 2.6, a simplified version of a model developed by Hamer et al. (1989b) to 

calculate the pressure on a soft particle being plastically compressed between two 

hard flat surfaces, was temporarily adopted. That model served as a neat tool to 

obtain quick results needed in further parts of the main model of this Thesis, but is 

not adequate (in its simplified form used by the present author) to give a 

satisfactorily accurate estimation of the pressure. There are three reasons for this 

inadequacy. 

(1) The omission of surface displacements, normally imposed by the calculated 

pressure, which would release some of the pressure. This was done by the present 

author to simplify the early analysis and is not a feature of the original model of 

Hamer et al. (1989). 

(2) The omission of thermal displacements, induced by the frictional heating and 

thermal stresses in the contact, as is shown in chapter 3. 

(3) The omission of the effect of the elastohydrodynamic pressure along the 

periphery of the (disk shaped) particle. 
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 The above are all removed in this section. Moreover, the local speeds and 

tractions at the interfaces of the particle with the counterfaces are more clearly and 

accurately defined, as is shown later. In general, the deformation of the particle is not 

axisymmetrical, because the tractions on both of its faces (when the particle is seen 

as a disk) and the lubricant pressure around it are variable with position. The result 

might be a slightly elongated particle, the elongation being in the direction of sliding 

of the counterfaces, if such a motion exists. In purely rolling contacts, this elongation 

is not present. This has indeed been experimentally shown by Wan and Spikes 

(1988) and Dwyer-Joyce (1993). However, even in the case of sliding contacts, the 

particle will be assumed to remain circular, and the reasons for this assumption are 

explained in section 2.4.  

 According to the model of section 2.4 (see figure 2.5), the particle is 

modelled as a cylinder, having its faces in contact with the counterfaces. At the last 

stage of its squashing (inside the Hertzian zone of the contact), the particle is thus 

transformed into a very thin circular disk. At any stage during its plastic deformation, 

the particle is partitioned in elemental orthogonal parallelepipeds, which, if projected 

on the xy plane as in figure 5.1, appear as squares. These parallelepipeds or squares 

are called “sectors” in the remaining of this study. 

 

 

 

Figure 5.1 Particle (red circle) partitioned in sectors. 
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The peripheral sectors of the partitioned particle (figure 5.1) have either two or three 

wetted sides (like sectors A and B, respectively), which are under the action of the 

local elastohydrodynamic pressure pEHL. The elastohydrodynamic pressure is 

calculated by solving the line EHL contact problem by any suitable method. 

Alternatively, it can be substituted by the relative Hertzian pressure distribution, 

which serves as a good approximation, especially in the Hertzian zone of the contact. 

Either way, pressure pEHL is known at any position (x,y) in the contact. 

 Any sector of the particle is under the action of three normal stresses: the 

internal stresses σx, σy, and the externally applied solid pressure p (figure 5.2). 

Surface tractions τ1 on surface 1 and τ2 (not shown in figure 5.2) on surface 2 are 

also applied, caused by the friction between the particle and the counterfaces. 

 

 

Figure 5.2 Forces on an elemental parallelepiped (sector) of the particle. 

 

 

The directions of vectors 
~
1τ  and 

~
2τ  depend on the direction of the local velocity 

vectors. If Vp1 and Vp2 are the speeds of the particle as a rigid body relatively to 

counterfaces 1 and 2, respectively (see section 2.7, figure 2.7 and equations (2.45), 

(2.46)) and Vextr is the extrusion speed of the particle (see equation (2.52)), then the 

magnitudes of the x and y-components of the velocity vector of a sector (velocity 

relatively to a counterface) are given by the following equations: 

 

O 

τ1 

2 

1 

σy 

σx 

p 

p 

z 

y 

x 



§ 5.2 Solid pressure on the particle – an advanced model  252

( )

( )

( )

)0   ,0   ,0(,     

sin

cos

cos

2p1p

extr

extr2p,2

extr1p,1

>>≤≤











⋅=

⋅−=

⋅−−=

VV

VV

VVV

VVV

y

x

x

πϑ

ϑ

ϑ

ϑ

                                 (5.1) 

 

where angle ϑ can be viewed in figure 3.1 (it’s the angle between axis x and the 

vector of the extrusion velocity). The resultant speeds V1 and V2 of a sector relatively 

to counterfaces 1 and 2 respectively, are as follows: 
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 The following angles ϕ1 and ϕ2 are defined: 
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From the geometry of the problem and assuming (without loss of generality) that 

counterface 1 is moving with a higher tangential speed in comparison with 

counterface 2 (u1 > u2, see figure 2.1), it is proved that: 
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 A typical sector has dimensions ∆s × ∆s × H where H is the height of the 

sector along the z-axis: 

 

21 wwhH ++=                                                                                                       (5.6) 

 

where h is the elastohydrodynamic film thickness at the position of the sector (as if 

there were no particle present in the contact) and 21  , ww , are the surface normal 

displacements of counterfaces 1 and 2, respectively, at the position of the sector. The 

surface displacements consist of two parts: a thermal part and a mechanical part. 
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 Thermal normal surface displacements are calculated using the method of the 

“thermoelastic displacement potential” (see section 4.3). After calculating the 

thermal stresses, the surface thermal stresses ( ) ( ) ( )ψψψ ττσ lzyzxz therma,thermal,thermal,  and  , , arising 

from the application of the method of the Potential (denoted by the symbol “ψ”), as 

explained in section 4.3, are suppressed by the application of an opposite surface 

loading ( ) ( ) ( )ψψψ ττσ thermal,thermal,thermal, ,, zyzxz −−− . The normal surface displacements due to 

the action of the suppressive surface loading are the sum of the displacements owing 

to the normal and the tangential surface stresses: 
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From the Boussinesq-Cerruti equations (section 4.2), the following equations are 

extracted: 
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Finally, 
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where the first part of the right-hand side of equation (5.11) is the surface 

displacement due to the application of the “thermoelastic displacement potential”. 

 On the other hand, the mechanical part of the overall surface normal 

displacement (see equation (5.7)) is calculated exactly as outlined in equations  

(5.8)-(5.10), where, instead of the suppressive surface loading, the mechanical 

loading imposed by the particle (pressure and tractions at the Hertzian contact circle 

between the particle and each counterface) yixip ,, ,, ττ  is used, where subscript i 

refers to a counterface (i = 1, 2). Of course, the calculation of the mechanical 

displacements requires the solid pressure between the particle and the counterfaces 

be known. 

 In order to calculate the solid pressure distribution on the particle, it is 

necessary to start from the peripheral sectors (figure 5.3), where the stress conditions 

are known (lubricant pressure pEHL). 

 

 

Figure 5.3 Peripheral sectors of the particle. 
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The force equilibrium of a sector along the axis x or y is written as follows: 

 

( ) yxqyxyxyHyH qqqqq , ,     0ddddddd ,2,1 ↔=⋅⋅+⋅⋅+⋅⋅−⋅⋅+ ττσσσ       (5.12) 

 

where dx = dy (= ds) because a sector is modelled as square on the xy-plane. 

Equation (5.12) finally gives: 
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Discretizing equation (5.13), the following two equations are derived: 
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where sector (i–1,j–1) shares a common side with sector (i,j), the former being inner 

and the latter being outer. In equations (5.14) and (5.15), ∆s denotes the length of an 

edge of the square base of a sector and is constant for all sectors: 
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where R is the radius of the deformed (disk shaped) particle (equation (2.20)) and Ny 

is the number of sectors along the radius of the particle on axis y. The peripheral 

sectors are located as follows: 
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where the square brackets in equation (5.17) denote the “integer part” of the enclosed 

expression. 

 During its motion inside the elastohydrodynamic gap, the particle is under a 

full plastic state. Hence, the von Mises yield criterion can be applied at each sector of 

the particle. The von Mises equation is written as follows: 

 

( ) ( ) ( ) ( ) 2
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where Yp in our case is the yield stress in uniaxial compression of the particle’s 

material (referring to the specific temperature of the sector). In our particular case, τyz 

and τzx are the tractions at the bases of the sector, whereas τxy is much less than the 

other shear stresses and can be ignored: 
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where τi,x and τi,y are given in equations (5.4) and (5.5). However, a complication 

arises because the tractions on the two bases of a sector are unequal (τ1 ≠ τ2) when 

there is sliding on both faces of a sector, which is true (according to the model of the 

Thesis) when the particle is in the inlet zone of the contact, or in other words, during 

particle’s extrusion. The inequality of tractions τ1 and τ2 is due to the unequal friction 

coefficients used for the counterfaces. In any case, the following effective friction 

coefficient is used in the von-Mises equation: 
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The von Mises equation (5.18) is finally written as follows (bearing in mind that 

σz = –p): 
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For a typical peripheral sector (like sector A of figure 5.1): σx ≅ σy ≅ pEHL. Thus, 

equation (5.21) can readily be solved to give the solid pressure on any peripheral 

sector. 

 The analysis can now proceed one step further to the first set of inner sectors, 

marked by red color in figure 5.4. 

 

 

 

Figure 5.4 First set of inner sectors (red) and peripheral sectors (black). 

 

 

The internal normal stresses σx and σy of any of these inner red sectors are calculated 

from equations (5.14) and (5.15), using equations (5.4) and (5.5). The pressure p is 

then calculated from the solution of equation (5.21). 

 Applying the same procedure to all remaining sets of inner sectors, the solid 

pressure distribution on the particle is found. Initially, the thickness of the particle 

disk is assumed equal to the film thickness at the position of the centre of the 

particle. After obtaining the pressure distribution, flash temperatures are recalculated 

following the method outlined in chapter 3. This is followed by surface-displacement 

calculations according to equations (5.7)-(5.11), and the variable thickness of the 

particle is established from equation (5.6). Between two successive steps of the 

iteration, the results for the pressure are checked for equality and, if found 

unacceptably unequal, a new pressure distribution is assembled through under-

relaxation: 
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where pprevious and pold are the pressures calculated one and two steps previously, 

respectively, and δ is the under-relaxation factor, suitably chosen as δ = 0.2. The 

whole procedure is repeated until the results for the solid pressure distribution 

converge. 

 The effect of surface displacements on the shape of the cylindrical 

(deformed) particle is shown in figure 5.5. 

 

 

 

 

Figure 5.5 2-dimensional, lateral view of the deformed particle. 

     The z-scale is greatly exaggerated for better viewing. 

 

 

The elliptic-shaped upper and lower parts of the particle in figure 5.5 are the result of 

the counterface displacements. These displacements are much smaller in comparison 

with the radius R of the particle, shown in figure 5.5. In chapter 2, the radius of the 

deformed particle is calculated on the basis that the counterfaces are rigid. The latter 

assumption has been removed in the present chapter. Therefore, the shape of the 

deformed particle is no longer considered idealistically cylindrical, but allows for the 

base convexities shown in figure 5.5. This affects the way of calculation of particle’s 

radius during deformation. The conservation of volume of the particle is easily 

derived from figure 5.5 and is written as follows: 

z 

x 
R Convexity due to the 

surface displacements 
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              At the position of the centre of the particle. 
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where h is the lubricant film thickness at the position of the centre of the particle, as 

if the particle were absent from the contact. Using equation (5.23) and replacing the 

double integral to take into account particle’s discretization into sectors, the radius of 

the deforming particle is given as follows: 
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Equations (5.23) and (5.24) replace equations (2.18) and (2.20), respectively. It is 

worth noting that the author has verified the accuracy of equation (2.20) by plotting 

the results for radius R using both the simplified equation (2.20) and the “accurate” 

equation (5.24); the difference is indistinguishable. It must also be mentioned that 

surface thermal expansion partly counteracts the settling of the counterfaces due to 

the solid pressure applied by the particle. The results for radius R are presented later 

in this chapter. 

 

 

 

 

5.3 Grids for the temperature and stress calculations 
 

Because of the complexity of the complete model, the number of calculation nodes 

must be kept as low as possible, without sacrificing accuracy. However, the grids 

used for the calculations must cover the whole area affected by the frictional heat and 

the thermal and mechanical stresses. The latter causes problems when the particles 

studied are big (as for example larger than 20 µm) and the central film thickness 

relatively thin (as for example less than 0.5 µm), because the stressing conditions are 
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more severe and the affected areas larger. Larger particles make their first contact 

with the counterfaces further away from the nominal point of contact (centre of the 

Hertzian zone – see figure 2.2) than smaller particles, which means that their 

travelling distance before reaching the outlet zone of the contact is longer in 

comparison with that for the smaller particles. Conclusively, larger particles require 

bigger grids, which require more nodes for adequate discretization. 

 The grids are part of the moving counterfaces and move in space with their 

tangential speeds (u1, u2), as is shown in figure 5.6. 

 

 

 

Figure 5.6 Grids for the temperature and stress calculations. 

 

 

This means that the particle may move in relation to both grids (3-body problem) or 

in relation to just one grid (2-body problem). The boundary conditions of skin 

temperatures and pressures/tractions have to be continuously adjusted as the particle 

moves inside the elastohydrodynamic gap. 

 The boundaries of the grids are defined as follows: 

xgrid 

xgrid 

Grid for counterface 1 

Counterface 2 

Counterface 1 

u2 

u1 

Grid for counterface 2 
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where Rmax is the maximum possible radius of the disk-shaped (deformed) particle, 

which appears in the Hertzian zone of the contact: 
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The symmetry about plane y = 0 is fully taken into account in the calculations. The 

x-limits defined in equations (5.25) are relative about point x = 0 (the centre of the 

Hertzian zone of the contact) and refer to time t = 0, when the particle starts being 

elastically deformed. For t > 0, the x-position of the grids changes according to the 

motion of the counterfaces with their tangential speeds u1 and u2. If xgrid stands for 

the x-distance of a point inside the area of a grid and in the direction shown in figure 

5.6 (in other words distance from the beginning of a grid), then, at any time t ≥ 0, the 

distance of a surface point of a grid from the centre of the Hertzian zone (x = 0) is: 

xinit + xgrid + ui·t  (i = 1, 2). Thus, all nodes can be easily addressed in space at any 

time. 

 

 

 

 

5.4 Application of the full model 
 

At this point, the model has been completely addressed and outlined in its entirety. 

The next step is a general application, analyzing a case typical of the results the 

proposed model yields. A flowchart of the complete model is shown in figure 5.7. 
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                START 

 
 

                 Input: Radii of curvature, load, 
                 mechanical and thermal properties 
              of the materials, lubricant properties, 

                                           sliding speed, slide/roll ratio 
                                        (or rolling speed), particle's diameter. 

 
 

       EHL solver. 
 
 

    Calculate solid pressure 
on the particle. 

 
 

                                                   Calculate solid frictional 
                                                   forces on the particle. 

 
 

       Flash temperature calculations. 
 
 

          3-d thermoelastic calculations 
         (stress/strain, surface displacements). 

 
 
 

                                       No          Convergence of solid 
pressure results? 

 
 
                                                                          Yes 

 
                                                    Fluid force calculations.                                                  

 
 

        Particle movement. 
 
         
 

    STOP      Yes      Particle started exiting                 No 
            the Hertzian zone? 

 
 
 

Figure 5.7 Flowchart of the full model. 
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In this example, all simplifying assumptions adopted in previous chapters (2-4) are 

removed. The only assumption kept is that the materials are mechanically 

(elastically) isotropic. All data for the example are quoted in tables 5.1-5.3. 

 
 

          Table 5.1 
 

Particle data 

Diameter (sphere) 20 µm 

Hardness at 0 °C 100 HV 

Hardness at θ °C 981·106 – 122625·θ   Pa 

Mass density 7850 kg/m3 

Specific heat at θ °C 445 + 8073·10-4·θ – 1993·10-6·θ 2 + 2572·10-9·θ 3 Joule/(kg·°C) 

Thermal conductivity at θ °C 59 – 2222·10-5·θ   W/(m·°C) 

Thermal diffusivity at θ °C ( ) ( )density massC at heat  specific

C at ty conductivi thermal

⋅°
°=

θ
θ

 

Yield stress in uniaxial 

tension at θ °C 2.8

C at  Hardness °= θ
 

 

 

The particle is initially spherical, with a diameter equal to 20 µm. At 60 °C (the 

initial temperature of the contact), the particle is approximately eight times softer 

than the counterfaces. The temperature dependency of the mechanical and thermal 

properties is clearly demonstrated in table 5.1. The values used are typical for steel 

and some of them (like those for the thermal properties) are more specifically typical 

for ferrite. The data for the counterfaces are quoted in table 5.2. 
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Table 5.2 

Counterface data 

Radius of curvature R1 = 20 mm, R2 = 28 mm 

Hardness at 0 °C 800 HV 

Hardness at θ °C 7848·106 – 981000·θ   Pa 

Modulus of elasticity at 

θ °C 207·109 – 25875000·θ   Pa 

Poisson ratio 0.3 

Friction coefficient µ1 = 0.2, µ2 = 0.15 

Specific heat at θ °C 445 + 8073·10-4·θ – 1993·10-6·θ 2 + 2572·10-9·θ 3   Joule/(kg·°C) 

Thermal conductivity in 

the x-direction at θ °C  27.61 + 3.0558·10-3·θ   W/(m·°C) 

Thermal conductivity in 

the y-direction at θ °C 27.61 + 3.0558·10-3·θ   W/(m·°C) 

Thermal conductivity in 

the z-direction at θ °C 25.1 + 2.778·10-3·θ   W/(m·°C) 

Mass density 7850 kg/m3 

Thermal diffusivity at 

θ °C ( ) ( )density massC at heat  specific

C at ty conductivi thermal

⋅°
°=

θ
θ

 

Coefficient of linear 

thermal expansion 11·10-6 °C-1 

Yield stress in uniaxial 

tension at θ °C 2.8

C at  Hardness °= θ
 

Shear modulus at θ °C ( )ratio Poisson12

C at  elasticity of modulus

+⋅
°= θ

 

 

 

The values used for the counterface properties are typical for steel and some of them 

(like those for the thermal properties) are more specifically typical for martensite. 
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Table 5.3 

Lubricant, contact and other data 

Sliding speed of the contact 1 m/s 

Slide/roll ratio 1 

Load per unit length of the contact 100 N/mm 

Viscosity-pressure coefficient (Z1) 0.5 

Dynamic viscosity at environmental conditions 0.1 Pa·s 

Bulk (initial, environmental) temperature (θ0) 60 °C 

Density of the lubricant at ambient conditions 870 kg/m3 

Specific heat of the lubricant 2000 Joule/(kg·°C) 

Thermal conductivity of the lubricant 0.14 W/(m·°C) 

Flow perturbation parameter (ε, see equation (2.24)) 0.8 

Speed U (see equation (2.25)) 0.5 m/s 

Initially the particle is carried by counterface: 2 

Number of sectors along the radius of the particle on axis y 

(Ny) 30 

Along the trajectory of the particle, complete flash 

temperature and thermomechanical calculations are done at 317 points (every 2.4 µm) 

Spatial steps for the thermomechanical stress calculations 

∆x × ∆y × ∆z 50 × 9 × 20 

Boundaries of the grids: xinit, xfin, yfin (= zfin)  –700 µm, 1031 µm, 81 µm 

Total number of surface nodes (old + new) for 

thermomechanical calculations (see equations (4.71)) 560450 

Number of grid nodes 9000 (= 50 × 9 × 20) 

 

 

The values for the lubricant’s properties listed in table 5.3 are typical for unused 

engine oils (see Hamrock, 1994, chapter 4). Some interesting results are quoted in 

table 5.4. 
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      Table 5.4 

Some interesting results 

Central film thickness hc ≅ 0.7 µm 

Hertzian contact semi-width b ≅ 114 µm 

Tangential speeds of the counterfaces u1 = 1.5 m/s, u2 = 0.5 m/s 

Point where the particle is first pinched xt=0 ≅ –700 µm 

Maximum particle (cylinder – deformed) radius Rmax ≅ 43 µm 

Mass of the particle m ≅ 0.03 µgr 

Time when the geometrical centre of the particle 

enters the Hertzian zone of the contact 0.39 ms 

Particle pass time (from x = xt=0  to  x = b) 0.54 ms 

Particle Reynolds number (equation (2.27)): 

- ignoring thermal effects due to internal 

shearing in the fluid 

- including thermal effects 

Rep = O(10-3) 

Rep = O(1) 

Maximum elastohydrodynamic pressure 0.55 GPa (figure 5.10) 

Maximum flash temperature on counterface 1 1350 °C 

Maximum flash temperature on counterface 2   846 °C 

 

 

The particle sticks to the counterface with the higher friction coefficient, which is 

counterface 1. It then slides on counterface 2 all the way until it reaches the outlet 

zone of the contact. During its plastic deformation, the particle is transformed from a 

sphere (initially) to a thin disk (finally), with a final thickness at the order of the 

central film thickness of the contact. The final thickness of the particle is actually 

greater than the central film thickness of the contact since the counterfaces deform 

elastically and accommodate a part of the body of the particle. This counterface 

elastic displacement is shown graphically later in this chapter. The flattening of the 

particle is graphically demonstrated in figure 5.8. Figure 5.8 shows the change of the 

radius of the particle as it deforms plastically during its passage through the elasto-
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hydrodynamic gap. The particle, according to the model, is assumed to be a cylinder 

during its deformation (see figure 2.5). 
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Figure 5.8 Calculated particle (cylinder) radius during plastic deformation 

        of the particle in the elastohydrodynamic gap (equation (5.24)). 

 

 

It is again noted here (like it was done in chapter 2, figure 2.8) that the initial radius 

shown in figure 5.8 is less than the radius of the spherical particle because it refers to 

the equivalent cylinder of volume equal to the volume of the initially spherical 

particle (i.e. it is not the radius of the sphere). 

 Immediately after being pinched, the particle starts being plastically 

deformed. Therefore, its radius changes continuously following the change of slope 

of the counterfaces in the inlet zone, until the particle reaches the flat Hertzian zone 

of the contact, where the radius remains approximately constant. Inside the Hertzian 

zone of the contact, the frictional heat produced between the particle and the 

counterfaces causes thermal expansion and alteration of the stress and temperature 
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fields, which results in a slightly altered local geometry of the counterfaces. 

Nevertheless, this disturbance is very small to be noticed in the radius of the particle 

shown in figure 5.8, although it is clearly noted in the figures showing the normal 

and frictional forces on the particle following next. 
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Figure 5.9 Normal force and frictional forces on the particle 

        during its passage through the contact. 

 

 

 Figure 5.9 shows the normal force on the particle (due to its plastic 

compression in the contact) as well as the two frictional forces (which are essentially 

indistinguishable in this particular figure due to the vertical-axis scaling necessary 

for plotting the normal force). Comparing figure 5.9 with figure 2.9, the latter created 

with the simplified model of chapter 2, it is immediately noticeable a change in the 

morphology of the curves. The curves in figure 2.9 are monotonically increasing 

until the entrance to the Hertzian zone, whereas the curves in figure 5.9 exhibit a 

sudden drop just before the entrance to the Hertzian zone. It is vital to realize that the 
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simplified model represented by figure 2.9 omits the effect of the elastohydro-

dynamic pressure on the particle as well as the instantaneous counterface 

displacements due to the pressure applied by the particle. The simplified model also 

omits the frictional force components on the particle applied in the direction of 

sliding of the particle (axis x). The traction map on the particle surface changes 

drastically as the particle enters the Hertzian zone of the contact, because at that 

point, its lateral expansion suddenly stops and the only remaining tractions are those 

due to its continuing sliding (and thus friction) on counterface 2. It is easily 

understood that when the extrusion of the particle ceases at the entrance of the 

Hertzian zone, the solid pressure on the particle is substantially released. However, 

the sudden drop observed in figure 5.9 is actually a mathematical idealization, since, 

in reality, the particle enters gradually (and not instantly) the flat Hertzian zone. In 

reality, the average solid pressure on the particle is expected to exhibit a more 

gradual reduction, compared with the reduction shown in figure 5.9, as the particle 

enters the Hertzian zone at a finite speed. Nevertheless, the amount of reduction 

should be the same, regardless of the model used in the study, and, thus, being equal 

to that shown in figure 5.9. 

 All the previously named simplifications have been removed from the refined 

model of the present chapter. Apparently, the effect of the elastohydrodynamic 

pressure and of the variable tractions is quite significant in the calculation of the 

pressure on the particle, and this has been fully taken into account in the advanced 

model outlined in section 5.2. The elastohydrodynamic pressure distribution for the 

presented example (neglecting any effects from the presence of the particle) is shown 

in figure 5.10. The pressure distribution of figure 5.10 resembles the Hertzian 

pressure distribution, the major deviation being in the inlet zone of the contact. It 

must be realized that the sudden rise of the elastohydrodynamic pressure at the 

entrance and the first half of the Hertzian zone is “sensed” by the particle relatively 

long before the centre of the particle disk enters the Hertzian zone because at that 

point, the leading front particle semi-disk has already entered deep enough inside the 

Hertzian zone. 
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Figure 5.10 Approximate elastohydrodynamic pressure distribution        

         of the line contact, neglecting the presence of the particle. 

 

 

More specifically, in our particular example, at the time when the centre of the 

particle crosses the imaginary line of the entrance to the Hertzian zone, the leading 

edge (sector) of the particle is at a distance –b – Rmax = –114 µm + 43 µm = –71 µm 

from the centre of the contact (see table 5.4). At that distance, 623.0
114

71
−≅

−
=

b

x
, 

and the corresponding elastohydrodynamic pressure is 78 % of the maximum elasto-

hydrodynamic pressure in the contact, which is quite significant. 

 Figure 5.11 compares the solid frictional forces T1 and T2 with the lubricant 

forces on the particle (Fstat, Fdyn), similarly to figure 2.10 in chapter 2. 
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Figure 5.11 Solid frictional and fluid forces on the particle during 

     its passage through the elastohydrodynamic gap. 

 

 

Figure 5.11 shows that the solid frictional forces are much higher than the lubricant 

force components and the overall fluid force (Ffluid = Fstat + Fdyn) on the particle, as 

had been confirmed with the simpler model in chapter 2. As can be seen, the static-

pressure fluid force on the particle becomes negative for x < –250 µm. This means 

that although the elastohydrodynamic pressure initially pushes the particle out of the 

contact, it finally acts in favor of particle entrapment and drags the particle inside the 

contact gap. Of course, as already mentioned, this is by no means a decisive force in 

the particle’s motion and direction as it is much weaker than the solid frictional 

forces, which, essentially, govern the motion of the particle inside the gap. 

 In chapter 2, it is shown that the particle sticks to the counterface with the 

higher friction coefficient, immediately after being trapped (see figure 2.11). This is 
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also the case with the advanced model of the present chapter, as is clearly shown in 

figure 5.12. 
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Figure 5.12 Relative sliding speeds and extrusion speed of the particle 

            during its motion inside the elastohydrodynamic gap. 

 

 

Vp1 is the sliding speed of the particle relatively to counterface 1. Similarly, Vp2 is the 

sliding speed of the particle relatively to counterface 2. From figure 5.12, it is infered 

that the particle sticks to counterface 1 (because Vp1 = 0) and slides on counterface 2 

(Vp2 ≠ 0). The same comments accompanying figure 2.11 hold here as well. 

 The plastic compression and sliding of the particle inside the elastohydro-

dynamic gap results in friction, which produces heat. According to the analysis of 

chapter 3, this heat can be very high for large and/or hard particles. In the example of 

section 3.8, it is shown (despite the simplifications made there) that the frictional 

heat is also very high even for large but relatively soft particles. In the present 
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chapter, after removing the simplifications of chapter 3, it is actually shown that the 

frictional heating is indeed more severe than one might expect. This is clearly 

demonstrated in figure 5.13. 

Hertzian zone

Counterface 1
Time: 0.52 ms
Maximum flash temperature: 1350 °C

 

 

Figure 5.13 Flash temperature distribution on counterface 1 as the particle 

         starts exiting the Hertzian zone of the contact (t ≅ 0.52 ms). 

         The particle sticks to this counterface. 

 

 

Figure 5.13 shows the distribution of the flash temperature (temperature increase 

above the bulk-initial temperature) on surface 1 as the particle (its leading sector) 

starts exiting the Hertzian zone of the contact. The flash-temperature field is 

completely enveloped in the Hertzian zone because the particle at this stage has a 

diameter equal to 2·Rmax = 2·43 = 86 µm (see table 5.4), which is much smaller than 

the width of the Hertzian zone (2·b = 2·114 = 228 µm). The maximum flash 

temperature on counterface 1 is 1350 °C, which is quite high thinking that the 

particle is eight times softer than the counterfaces. However, the particle is also 

rather large (20 µm). The latter means that, when compressed in order to pass 

through the elastohydrodynamic gap (which is around 0.7 µm), the particle becomes 

a disk with a diameter equal to 86 µm. Moreover, the particle sticks to the surface 



§ 5.4 Application of the full model  274

shown in figure 5.13, which means that all of the frictional heat that goes to the 

aforementioned surface is concentrated to a relatively small area. Due to the previous 

two reasons and the fact that the solid pressure on the particle is sufficiently high, the 

magnitude of the flash temperature reaches such a high value. 

 For the other counterface (2) on which the particle slides all the way from its 

entrapment to its rejection in the outlet zone of the contact, the frictional heating is 

less severe, because heat is spread over a larger area. Figure 5.14 shows the flash-

temperature distribution on counterface 2 at the same time as for counterface 1 

(compare with figure 5.13).  

 

Partic
le sliding direction

Counterface 2
Time: 0.52 ms
Maximum flash temperature: 846 °C

 

 

Figure 5.14 Flash temperature distribution on counterface 2 as the particle 

         starts exiting the Hertzian zone of the contact (t ≅ 0.52 ms). 

         The green lines indicate the boundaries of the Hertzian zone. 

 

 

Because of the sliding of the particle on counterface 2 along the x-direction, the 

flash-temperature field extends over a wide area in the x-axis. The magnitude of the 

flash temperature follows closely the variation of the normal force on the particle, as 

can be realized by comparing figures 5.9 and 5.14. 
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 Compared with the temperature distribution on counterface 1, the temperature 

distribution on counterface 2 exhibits a displacement towards the inlet zone of the 

contact. This is due to the lower tangential speed of counterface 2 in comparison with 

that of counterface 1. 

 The maximum flash temperatures calculated in this example are encountered 

only 0.5 ms after the particle is entrapped. This is the time needed for the particle to 

travel from the point it is pinched to the point where its leading edge starts entering 

the outlet zone of the contact. There is a travelling distance omitted in the 

calculations, and this is the distance between the centre of the particle disk and the 

leading edge of the particle, as the leading edge (or sector) starts entering the outlet 

zone (or, equivalently, starts exiting the Hertzian zone). At the aforementioned 

travelling path, the part of the particle standing in the outlet zone will be under no 

solid pressure from the counterfaces. In fact, the solid pressure distribution on the 

particle will change, but this change is difficult to calculate with a simple analysis. It 

rather requires an elastoplastic analysis with a Finite Element method. However, this 

change has very little effect on the maximum temperature encountered in the contact 

and this can be realized by observing figure 5.14, where it is obvious that the major 

heating has already occurred before the particle starts exiting the Hertzian zone of the 

contact. Another perspective of the flash-temperature fields is obtained from the two 

contour maps shown in figures 5.15 and 5.16. 
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 Figure 5.15 Contour map of the temperature distribution on counterface 1 

   as the particle starts exiting the Hertzian zone of the contact. 

   The particle stays stationary on this counterface. Temperatures 

   shown are in degrees C. 
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 Figure 5.16 Contour map of the temperature distribution on counterface 2 

   as the particle starts exiting the Hertzian zone of the contact. 

   The particle slides from left to right on this counterface.  

   Temperatures shown are in degrees C. 
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Figure 5.16 shows that the particle has left a very hot spot on counterface 2, where 

the maximum temperature is 906 °C (60 + 846). This hot area is located behind the 

particle and in the first half of the Hertzian zone. The lubricant covering this area is 

obviously affected by this thermal shock. The effect is expected to be more 

widespread when not only one but also more particles are squashed at the same time. 

The latter was speculated by Chandrasekaran et al. (1985) when attempting to 

explain experimental results on the scuffing of bearings lubricated with contaminated 

oils. However, as is shown later, the heat convection from the counterfaces to the 

lubricant is very weak. Therefore, despite the high surface temperatures, the lubricant 

is not affected significantly by the heat wave. 

 It is interesting to see how rapid the heat accumulation is, by ploting the 

flash-temperature fields on the counterfaces before the particle enters the Hertzian 

zone. Figure 5.17 shows the flash-temperature distribution on counterface 1 at the 

time the particle starts entering the Hertzian zone (t ≅ 0.36 ms). 
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Figure 5.17 Flash temperature distribution on counterface 1 as the particle 

         starts entering the Hertzian zone of the contact (t ≅ 0.36 ms). 

                    The particle sticks to this counterface. Compare with figure 5.13. 
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At that time, the maximum flash temperature on counterface 1 is “only” 896 °C 

(instead of 1350 °C at the time when the particle starts exiting the Hertzian zone). 

Similarly for counterface 2,  the maximum flash temperature at the time when the 

particle starts entering the Hertzian zone is 646 °C (instead of 846 °C when the 

particle starts exiting the Hertzian zone, a 200 °C difference). The corresponding 

flash-temperature distribution is presented in figure 5.18. 
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Figure 5.18 Flash temperature distribution on counterface 2 as the particle 

         starts entering the Hertzian zone of the contact (t ≅ 0.36 ms). 

         The particle sticks to this counterface. Compare with figure 5.14. 

 

 

Therefore, inside the Hertzian zone of the contact (width: 2·b = 2·114 = 228 µm), the 

produced frictional heat results in a 454 °C and 200 °C temperature increase for 

surfaces 1 and 2, respectively. These increments represent 34 % and 24 % of the 

maximum flash temperatures encountered on counterfaces 1 and 2, respectively. The 

percentages are significant and show that the wider the Hertzian zone of the contact, 

the more time the particle spends sliding and, hence, heating the counterfaces. On the 
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other hand, it is obvious that larger particles travel longer sliding distances before 

reaching the outlet zone as compared with smaller particles, because larger particles 

start sliding further away from the Hertzian zone in comparison with smaller ones. 

 The isothermal lines for the flash-temperature fields are shown in figures 5.19 

and 5.20, for the time when the particle starts entering the Hertzian zone. 
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 Figure 5.19 Contour map of the flash-temperature distribution   

   on counterface 1 as the particle starts entering the 

   Hertzian zone of the contact. The particle sticks to 

   this counterface. Temperatures shown are in degrees C. 

 

 

Figure 5.19 shows that the thermally affected area of counterface 1 is concentrated in 

the vicinity of the deforming particle. This is so because the particle is stationary on 

counterface 1. However, the sliding of the particle on the other surface (counterface 

2) produces a strikingly different result. As figure 5.20 demonstrates, even with the 

particle outside the Hertzian zone, the thermally affected area on counterface 2 

extends well beyond the boundaries of the particle in the direction of its trailing edge. 
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This leaves a hot path on surface 2 and affects the lubricant in the inlet zone of the 

contact. 
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Figure 5.20 Contour map of the flash-temperature distribution on 

      counterface 2 as the particle starts entering the Hertzian 

      zone of the contact. The particle stays stationary on this  

      counterface. Temperatures shown are in degrees C. 

 

 

Figure 5.20 shows that just behind the trailing edge of the particle (in the inlet zone 

of the contact), counterface 2 has a temperature of around 460 °C (60 + 400). Even at 

a distance of around 100 µm behind the trailing edge, the overall temperature is still 

around 100 °C. 

 The previous results demonstrate in a dramatic way that soft-ductile particles 

are anything but harmless when squashed in an elastohydrodynamic sliding contact. 

For the particular (typical) example, a 100 HV, 20 µm particle is capable of 

producing such immence frictional heat that maximum temperature increase in the 

contact reaches 1350 °C. The mechanism of the event is based on the fact that the 

particle is ductile and will expand substantially, until its thickness is reduced to the 

order of the central film thickness, in order for the particle to pass through the narrow 

elastohydrodynamic gap (which is usually less than 1 µm). On the other hand, the 

particle has a tendency to stick to one counterface and, thus, slide against the other. 
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Therefore, an object of large contact area will eventually slide on a surface under 

relatively high solid pressures. The end effect is the build-up of heat, which is 

transferred mainly to the counterfaces. 

 The softness of the particle would imply that the solid pressures between it 

and the counterfaces will be lower than in the case of a hard particle. This is indeed 

the case as is shown in figure 5.21. 
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Figure 5.21 Average pressure on the particle during its plastic 

                compression in the elastohydrodynamic gap. 

 

 

However, although the calculated solid pressure may be lower than in the case of a 

much harder particle (but still significantly high), a soft-ductile particle is flattened in 

the contact in contrast to a hard particle, which will more-or-less retain its initial 

shape. In other words, a hard particle will provide much less surface for friction, 

compared with a soft-ductile particle. 
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 It is interesting to discuss at this point the possibility of particle melting due 

to the severe heating. As was shown, the particle sticks to counterface 1, where the 

maximum overall temperature is 1350 + 60 = 1410 °C. Depending on particle’s 

material, the particle might soften and even partially melt, although the flash heat 

incident lasts only about 0.6 ms. The possible softening of the particle (or melting) 

could explain some occasions where it appears that the particle sticks to the faster 

moving surface, even when the faster moving surface has, apparently, a lower 

friction coefficient in comparison with the slower moving surface. As is also 

discussed in chapter 2 (see the last paragraph of section 2.8), semi-solid substances 

(like grease) are known to adhere to the faster moving surface in sliding contacts. 

Therefore, if the particle behaves as a semi-solid substance, it is logical to assume 

that it will stick to the faster moving surface at some point during its deformation, 

and that point is when the particle will start to melt. However, such behaviour is not 

universal and material can stick to the slower moving surface, too, or to both surfaces 

(see for example Zantopoulos (1998), page 429, who observed such behaviour during 

scuffing tests in tapered roller bearings). From the point of view of this Thesis, a 

possible melting of the particle marks the end of the temperature and stress analysis 

because the particle is unable to cause serious damage when being in a semi-liquid 

state. 

 Before assessing further the damage risks involved in the entrapment of soft 

particles in concentrated contacts, the complete series of thermal and overall stress-

components distributions in the contact are presented in the following pages. All 

diagrams refer to the time when the particle starts exiting the Hertzian zone. At that 

time, the flash temperatures have reached magnitudes close to their absolute 

maximum. 
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Figure 5.22 Overall stress distribution σx on the counterfaces at the time                    

                             when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.23 Overall stress distribution σy on the counterfaces at the time 

                      when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.24 Overall stress distribution σz on the counterfaces at the time 

                      when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.25 Overall stress distribution τxy on the counterfaces at the time 

                      when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.26 Overall stress distribution τyz on the counterfaces at the time 

                      when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.27 Overall stress distribution τzx on the counterfaces at the time 

                      when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.28 Thermal stress distribution σx,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.29 Thermal stress distribution σy,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 



§ 5.4 Application of the full model  291

 

Counterface 1 (z = 4.5 µm)

 

 

Partic
le sliding direction

Counterface 2 (z = 4.5 µm)

 

 

Figure 5.30 Thermal stress distribution σz,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.31 Thermal stress distribution τxy,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.32 Thermal stress distribution τyz,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Figure 5.33 Thermal stress distribution τzx,thermal on the counterfaces at the time 

                 when the particle starts exiting the Hertzian zone (t = 0.52 ms). 
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Small irregularities in some of the stress distributions shown in figures 5.22-5.33 are 

easily explained through the scale used in the figures (magnified), the number of 

nodes used (not very high because of CPU time constraints), and the large number of 

competing factors (temperature-dependent mechanical and thermal material- 

properties, thermal anisotropy, mechanical, thermal and Hertzian stresses, artificial 

surface loading to remove parasitic surface thermal stresses produced by the method 

of the “Thermoelastic Displacement Potential” (see the explanations above equation 

(5.8))). 

 The maximum values of all stress components at the time when the particle 

starts exiting the Hertzian zone (t = 0.52 ms) are summarized in table 5.5. Overall 

and thermal stress values of the same stress component do not necessarily refer to the 

same location in the bodies. 

 

 
          Table 5.5 
 

Maximum values of the overall and thermal stresses 

at the time when the particle starts exiting the Hertzian zone (t ≅ 0.52 ms) 

Overall stress (GPa) Thermal stress (GPa) 
Stress 

Body 1 Body 2 Body 1 Body 2 

σx –5.75 –3.30 –5.29 –3.28 

σy –5.23 –3.32 –5.27 –3.32 

σz –7.22 –4.24 –6.74 –4.24 

τxy –0.07 +0.04 +0.07 –0.04 

τyz +1.00 +0.61 +1.04 +0.61 

τzx +0.29 –0.14 +0.25 +0.12 

 
 

 

As is evident from table 5.5 and from figures 5.22-5.33, the frictional heating 

between the particle and the counterfaces results in high thermal normal stresses, 

which actually account for the largest part of the overall normal stresses, with surface 

1 being the more overly stressed due to the higher flash temperatures there. 

 However, the loading map shown in table 5.5 might not be representative of 

the worst loading of the contact. This can be realized from figure 5.21, where the 
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average solid pressure on the particle is plotted. In the latter figure, it is evident that 

at the time when the particle starts exiting the Hertzian zone (t ≅ 0.52 ms), the 

average solid pressure between the particle and the counterfaces is quite small 

compared with the maximum pressure encountered when the particle enters the 

Hertzian zone, which is at a time around t = 0.39 ms. Consequently, the mechanical 

stresses at time t = 0.52 ms are not very high, as opposed to the thermal stresses, 

which at the same time have their maximum strength. The “contest” between 

mechanical and thermal stresses starts as soon as the particle gets trapped. After that, 

the contest is continuous until the particle enters the Hertzian zone, where the 

thermal stresses prevail. The area of high risk for surface damage (plastic 

deformation) is located somewhere near the entrance to the Hertzian zone, where 

both mechanical and thermal stresses have high magnitudes. The exact location can 

be found by studying the stress history of the counterfaces during the motion of the 

particle, as is done for the flash temperatures. Due to the excessive CPU (Central 

Processing Unit) times for a complete solution of the problem, the author reports 

here an approximate time, equal to 0.36 ms, when the worst loading is expected to 

take place. At that time, the particle’s geometrical centre is about to enter the 

Hertzian zone. The maximum flash temperatures are 896 °C on counterface 1 and 

646 °C on counterface 2, which are 66 % and 76 % of the absolute maxima 

(encountered at t ≅ 0.52 ms), respectively, as is shown in figures 5.17-5.20. Damage 

is indeed predicted to initiate on surface 1 (where the particle is stationary). This 

would mark the end of the present analysis, because after the creation of a plasticity 

zone on one counterface, any elastic results from the model of this Thesis are, 

obviously, invalid. 

 The omission of the thermal stresses from the stress calculations would have 

given false predictions of the risk of damage in the contact. This is made clearer 

when checking for yielding at each node of the grids. For example, applying the 

simpler model of chapter 3 in a case of a 30 µm particle (with all other properties as 

in the main example of this section) it was found that for a 20 × 15 × 40 node grid, 

counterface 2 would encounter plastic deformations as follows: 

• 0 nodes, considering only thermal stresses, 

• 26 nodes, considering only mechanical stresses, 

• 351 nodes, considering mechanical and thermal stresses. 
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This means that the omission of thermal stresses from the calculations would have 

resulted in about 90 % underestimation of the risk of plastic deformation and damage 

on counterface 2 (let alone the damage on counterface 1). 

 There are two important observations at this stage: 

(1) Thermal stresses increase significantly the risk of damage in the contact. This is 

immediately noticeable in table 5.5. Although mechanical stress maxima do not 

usually coincide with thermal stress maxima, it can be seen that in some areas on 

the counterfaces, thermal stresses account for the highest part of the overall 

loading. This has been confirmed by numerous authors in the past. For example, 

Ju and Huang (1982) showed analytically that the thermal stress is compressive 

and at a much higher level than that resulting from mechanical loading, when 

modelling the friction of a moving asperity on the surface of a bearing seal 

(check the conclusion of their paper). Marcher (1982b) showed analytically that 

“… the thermal stresses were greater than the mechanical stresses during the 

majority of the rub event.”, during his study of thermal versus mechanical effects 

in high speed sliding. He speculated that this high surface thermal (compressive) 

loading could explain the occurrence of surface “mud-flat” cracks, which could 

promote and accelerate wear. Similar effects from thermomechanical cracking 

were mentioned in Ju and Huang (1982). The analytical paper of Tseng and 

Burton (1982) (on the thermal stress in a two-dimensional half-space for a 

moving heat input) is even more spectacular in that it shows that “…the thermal 

compressive stress is found to be ten times the normal load for the assumed 

contact conditions and hence it is this stress rather than simple load 

concentration which causes the trouble.”. The importance of thermal stresses was 

also raised by Roylance et al. (1986), who showed that by omitting them and 

treating their problem as isothermal, significant damage would not have been 

predicted. 

(2) The role of the thermal stresses, apart from increasing the risk of failure in the 

contact, is to bring the high-risk strain zone much closer to the surface, than in 

the case where thermal loading is absent. This has also been shown analytically 

in, for example, Roylance et al. (1986), and Ting and Winer (1989). The effect of 

introducing thermal stresses is qualitatively similar to the effect of increasing the 

friction coefficient; both increase the overall level of stresses and bring the high-

risk strain zone closer to the surface, with the thermal-stress maximum occurring 
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on the surface. The latter explains the initiation and propagation of surface 

thermo-cracks and the material melting and detachment from scuffed 

components. It is also important to mention here that the rapid decrease of flash 

temperature below the surface, as is shown in figure 3.3, results in a 

corresponding fast weakening of the thermal stresses with depth. This has been 

confirmed by, for example, Roylance et al. (1986, see the discussion section and 

figure 5 of their paper). Kulkarni et al. (1991) performed an elastoplastic FEM 

analysis of a rolling-sliding contact with a translating heat source and found that 

thermal gradients were negligible below a depth equal to the contact half-width. 

This is exactly the result of the present model as can be seen in table 3.3 where it 

is quoted that in a depth of 100 µm (with the contact half-width equal to 114 

µm), the maximum overall temperature is 62 °C, which is only 2 °C (or 3 %) 

above the bulk temperature of 60 °C. At the higher depth of 114 µm, the 

temperature is almost equal to the bulk temperature and the thermal gradients are 

negligible (see also figure 3.3). 

 

Since thermal stresses are so important in the development of cracks and 

high-stress zones, it is interesting to seek information on the contribution of the 

particle’s internal heating and particle and surface cooling in the final level of flash 

temperatures in the contact. 

 For the particular example studied in this section, the omission of the 

particle’s internal heating results in maximum flash temperatures reduced by 10 °C 

for both counterfaces. This means that the maximum flash temperatures would be 

1340 °C (instead of 1350 °C) and 836 °C (instead of 846 °C) for counterfaces 1 and 

2, respectively, which is only 0.7 % and 1.2 % less than the calculated flash 

temperatures, correspondingly. Similar results have been obtained in other examples 

tested by the author, which suggests that the contribution of the heat generated inside 

the particle due to its plastic deformation is too small to make a real difference in the 

level of temperatures in the contact. 

 On the other hand, the contribution of particle and surface cooling due to heat 

convection to the lubricant is much less influential and can be neglected completely. 

In absolute terms, the cooling effect is extremely weak (< O(10-6) as compared with 

the amount of frictional heat produced in the contact). This weakness is attributed 



§ 5.4 Application of the full model  299

mainly to the value of the heat convection coefficient, which is extremely small. The 

lubricant film is indeed too thin to act as a heat sink for the absorption of the 

frictional heat, which is almost completely dissipated by conduction to the 

counterfaces. In an analytical work with some similarities (thermal stresses from a 

moving band heat source on the surface of a semi-infinite solid, using FEM analysis), 

Mercier et al. (1978) reached the same conclusion: “…For flood cooling such as 

found in sliding and machining processes, H (author’s quote: H is the heat 

convection coefficient) is not sufficiently large to significantly reduce the thermal 

stresses.”. It should be noted that the work of the previous authors (Mercier et al.) is 

not dealing with the even more extreme case of elastohydrodynamic films, which 

would induce even weaker cooling effects, as the present author invokes here. The 

interested reader is advised to study also the paper of DesRuisseaux and Zerkle 

(1970) which includes surface cooling effects in a theoretical analysis. 

 It is now clear that the squashed particle is able to cause severe frictional 

heating, which affects directly the counterfaces, the particle and the lubricant, 

increasing dramatically the risk of surface thermal failure from the predominant 

thermal stresses. It appears that the primary failure mode is thermal rather than 

mechanical. Even if the initial damage is local, the possibility of tempering reactions 

induced by the high temperatures (for example: martensite-to-austenite 

transformations at around 700-800 °C) followed by rapid cooling that introduces 

residual stresses, and the risk of microscopic surface thermo-cracks that could later 

propagate under the influence of elastohydrodynamic pressures to result in pitting (as 

in gears) are both precursors of extended damage. From this point of view, it is 

instructive to assess the risk of damage by just looking at the level of temperatures in 

the contaminated contact, rather than studying the stress results, which might not 

indicate direct damage. Table 5.6 shows a parametric study for the maximum flash 

temperatures for various operational conditions. The parameters of the study are the 

particle’s size (diameter) and hardness, assuming all other data are the same as 

shown in tables 5.1-5.3. The results presented in table 5.6 are typical results of the 

full model of this Thesis and not specially selected. The magnitude difference in the 

temperature results (for surface 2 only) of table 5.6 (full model) and those of table 

3.4 (preliminary model) is basically explained by the fact that the preliminary model 

neglects the heat directed from the particle to surface 2. The latter heat comes from: 
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(a) the interface of the particle with surface 1, 

(b) the interior of the particle, and 

(c) the interface of the particle with counterface 2, (temporarily transferred to the 

particle and partly redirected back to surface 2, according to the model of section 

3.4). 

 

              Table 5.6 

Parametric study – Theoretical maximum flash temperatures (full model) 

(conditions other than those listed below are the same as in tables 5.1-5.3) 

The particle sticks to surface 1. 

Maximum flash temperature [°C] Particle diameter 

[µm] 

Particle hardness 

[HV] Surface 1 (T1) Surface 2 (T2) 

T2/T1 

[%] 

                5 100   93            17 18 

                5 200 185            34 18 

                5 400 350            68 19 

10 100 211 103 49 

10 200 415 182 44 

10 400 760 318 42 

20 100          1350 846 63 

20 200          1560 962 62 

20 400          1830        1120 61 

 

 

According to table 5.6, a 20 µm, 400 HV spherical particle (half the hardness of the 

counterfaces) is capable of raising the local temperature in the elastohydrodynamic 

contact by 1830 °C! Larger particles, like 30 µm ones, result in theoretical 

temperatures in excess of 2,000 °C, which cannot be accepted in practice because 

they are expected to cause particle and/or counterface melting and this is shown 

through the full model of this Thesis, which applies the von-Mises yield criterion and 

detects if, where and when plastic deformation would occur. 

 Table 5.6 shows also that small and soft particles (like 5 µm and eight times 

softer than the counterfaces or less) do not cause severe frictional heating, as was 
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also shown in chapter 3. For so small particles, the highest risk for damage comes 

from the fact that they may accumulate in the inlet zone of the contact and cause 

fluid starvation, as is shown in chapter 1. 

 The analysis of the example in this section is completed with the presentation 

of the elastic surface-distortions in figures 5.34 and 5.35. 
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Counterface 1

 

 

Counterface 1

 

 

Figure 5.34 Elastic distortion of counterface 1 as the particle starts 

            exiting the Hertzian zone (t = 0.52 ms). Full view on 

     the upper graph and partial view on the lower graph. 
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Counterface 2

 

 

Counterface 2

 

 

Figure 5.35 Elastic distortion of counterface 2 as the particle starts 

            exiting the Hertzian zone (t = 0.52 ms). Full view on 

     the upper graph and partial view on the lower graph. 
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Figures 5.34 and 5.35 show the real elastic distortion of the counterfaces, as they 

would be observed with a naked eye, if it were possible to be frozen in time and have 

the particle removed. The maximum elastic displacements are quoted in table 5.7. 

 

 

Table 5.7 

Maximum elastic displacements 

at the time when the particle starts exiting the Hertzian zone (t ≅ 0.52 ms) 

Displacement Displacement on surface 1 [µm] Displacement surface 2 [µm] 

u –0.95 –0.86 

υ +0.22 +0.13 

w +0.57*  +0.24*  

 

*  A positive value for w indicates a cavity, according to the notation of figure 4.2, where the z-axis is     

   directed towards the interior of the bodies. This rule is not followed in figures 5.34 and 5.35 where     

   the w-values shown have the opposite sign (negative). 

 

 

 As figures 5.34 and 5.35 show, the elastic distortions of both counterfaces are 

very smooth. Although the displacements are elastic, it is worth mentioning here that, 

as is well known (see Tallian (1992), section 12.4), the dents caused by soft particles 

have a smooth appearance, in contrast to dents caused by hard particles, which 

appear irregular with sharp edges. According to the exhaustively detailed book of 

Tallian (1992) (see section 12.4, page 214, cases 1 and 3 of his book), “…Soft 

particle dents show rounded or drop shapes and rounded edges.”, whereas 

“…Debris (hard particle) dents are sharp-edged depressions corresponding to the 

shape of the indenting particle, originally with raised edges,…”. Additional 

information can be found in the work of Sayles and Dwyer-Joyce (see for example 

Sayles (1995) and Dwyer-Joyce et al. (1992)). 

 As is also extensively explained in section 3.8 with the comments about 

Zantopoulos’ (1998) paper, such soft-particle dents have usually the appearance of a 

drop (named “teardrop” in Zantopoulos’ paper, although not directly referring to 

contamination particles). The results of this Thesis and especially figures 5.34 and 
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5.35 confirm the experimental findings and, moreover, “suggest” that there may be 

further evidence of the presence of soft debris right at the bottom of soft-rounded 

dents: at that area we might expect to see a secondary small dent, or cavity, caused 

by the increased softening of the material due to the high local heating, if and when 

the operating conditions permit the development of high temperatures. The lower 

graphs in figures 5.34 and 5.35 show very small bumps, which, although elastic and 

thus recoverable, are expected to possibly leave a trace of their existence when the 

deformation is irrecoverable (plastic). If such small secondary cavities exist indeed 

inside macro-dents, then the deformed ductile particles responsible for their creation 

should also exhibit a complementary bump, which should fit in those micro-cavities. 

In fact, Ville and Nelias (1997) discovered experimentally such secondary-dents 

(small holes) in indentation tests with ductile, spherical steel particles, which were of 

equal hardness to the counterfaces in rolling-sliding contacts. However, their tests 

revealed such formations even under pure rolling conditions (no sliding) and it is not 

evident to the present author that the mechanism of their creation can be explained 

solely or partially by the thermo-plastic softening factor put forward in this Thesis. It 

would be more interesting to perform an FEM analysis using the thermomechanical 

stress results at the area of maximum loading or at the area where the first yield is 

predicted to occur, before reaching more solid conclusions. 

 

 

 

 

5.5 Construction of a safe map 
 

It would be very interesting and instructive to apply the model of the Thesis in order 

to predict which combinations of particles and operating conditions involve high (or 

low) risk of damage in a rolling-sliding contaminated contact. This study can neatly 

take the form of a map showing safe and unsafe regions of operation. Such maps 

were presented by Hamer et al. (1989b), and Hamer and Hutchinson (1992), but are 

confined to one-dimensional compression, squashing a particle between two slowly 

approaching flat surfaces. 

 A similar map is constructed for the needs of this Thesis. For reasons of 

usefulness and clarity, a 2-dimensional map with axes D/hc (particle diameter/central 
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film thickness) and Vs (sliding speed of the contact) has been chosen as the best 

option. The diameter D of the particle is the diameter of the particle before its plastic 

deformation, visualizing the particle as a sphere. The counterfaces are considered to 

be of equal hardness (800 HV). The friction coefficients between the particle and the 

counterfaces are chosen to lie in the boundary lubrication regime (µ1 = 0.20 and  

µ2 = 0.15). The particle is taken to be ductile and much softer than the counterfaces, 

as is the main objective of this Thesis. The particle’s hardness is 80 HV, which 

means that the particle is ten times softer than the counterfaces. Finally, the slide/roll 

ratio (sliding velocity divided by the arithmetic mean of the tangential speeds of the 

counterfaces) is chosen to be equal to 1. The “safe map” is shown in figure 5.36 and 

has been produced by applying the preliminary model of the Thesis, developed in 

chapters 2, 3 and 4, with the assumptions shown in table 3.2.  
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Figure 5.36 Safe map (based on the preliminary model of chapters 2, 3 and 4). 



§ 5.5 Construction of a safe map  307

These assumptions result in calculating significantly lower flash temperatures, but, 

on the other hand, the pressure between the particle and the counterfaces is 

significantly higher due to the assumption of rigid counterfaces. The preliminary 

model was preferred to the more accurate full model of the Thesis because of time 

constraints: the full model is significantly slower in CPU times because of the added 

computational tasks involved. For the reader to get an idea of the difficulties, it 

suffices to say that a single run of the main computer program of the Thesis with the 

full model requires approximately two weeks of time in a Personal Computer with a 

266 MHz INTEL Pentium-II processor for a sufficiently accurate analysis. This 

computing power is equivalent, if not superior, to the power of large Workstations 

and Mini computers ten years ago! The six points shown in the safe map (figure 

5.36) require several program runs each, in order to locate them on the map. Even 

with the preliminary model, the total computational (CPU) time for the construction 

of the map of figure 5.36 was no less than 3 months, using a 166 MHz processor, 

excluding the time lost in correcting minor bags and inefficiencies of the code, which 

raised the overall running time to well over one year! Although the use of a fast 

Workstation or even Mainframe computer was not prohibited, such an option was not 

convenient due to the large number of tests and runs required for the development of 

the computer program, which took more than four years and more than twenty 

releases before reaching its final form of over 2,000 lines of FORTRAN 90 

optimized code. 

 Returning to the safe map, a satisfactory data fit (red line on the map) is given 

by the following quadratic model: 

 

( ) c
2

s
7

scritical 10771.2002378.0565034.21 hVVD ⋅⋅⋅+⋅−= −                                   (5.27) 

 

which has a correlation coefficient equal to 0.990. For harder particles (or softer 

counterfaces), the red line shown in the map will move towards the safe region. Note 

that 0.69
sc ~Vh   since  1

 velocityrolling
== s

r

V
S   and hc is proportional to 

(rolling velocity)0.69, according to the central film thickness formula used in this 

study (as in Pan and Hamrock (1989)). 

 Increasing the sliding speed of the contact has two effects: 
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(1) For typical working conditions, the central film thickness is increased. This 

results in lower mechanical stressing from the particle, especially in the Hertzian 

zone of the contact. Thus, the likelihood of yielding is decreased. 

(2) More frictional heat is produced, which results in higher thermal loading. Thus, 

the likelihood of yielding is increased. 

 

 Clearly, (1) and (2) above are in conflict. The outcome of their competition 

depends on the relation of the central film thickness to the sliding speed of the 

contact. Using  0.69
sc ~Vh , as mentioned previously, the critical particle diameter is 

monotonically increasing with increasing sliding speed of the contact. This result is 

derived from equation (5.27), setting 0.69
sc Vch ⋅= , where c is a constant, and plotting 

the result, as in figure 5.37. 
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Figure 5.37 Critical particle diameter (qualitative view) to cause damage; 

          from equation (5.27), with 0.69
sc Vch ⋅= , where c is a constant. 
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 The safe map shown in this section is associated with the particular 

operational conditions in the contact, namely the slide/roll ratio, specific mechanical 

and thermal material-properties, specific ratio of particle hardness over counterface 

hardness, etc. If any of these were to change, a new safe map should be constructed. 

The data chosen for the map of figure 5.36 are typical and average, in order to give a 

representative view of what should be expected in most applications. However, 

particular applications cannot rely on figure 5.36 and need their own damage-risk 

analysis. 

 

 

 

 

5.6 Conclusions 
 

The basic model to study particle compression and shearing between two rolling-

sliding surfaces in an elastohydrodynamic contact was re-established in this chapter, 

in order to achieve a more accurate calculation of the stresses and temperatures 

expected to affect the lubricated contact. A flowchart of the complete model is 

presented in figure 5.7. Moreover, the simplifying assumptions adopted in previous 

chapters (see table 3.2), regarding the sharing of heat among the various elements 

(counterfaces, particle and lubricant) were all removed and the resulting full model 

was applied in a typical case of a ductile, spherical 20 µm particle being trapped 

between two rolling-sliding counterfaces, which were eight times harder than the 

particle. 

 The results of the full model are in line with the results of the simplified 

model, and are briefly summarized as follows. 

(1) The particle flattens in the inlet zone of the contact and becomes a thin disk as it 

passes through the flat Hertzian zone (figure 5.8). 

(2) The solid frictional forces on the particle are much higher than the overall fluid 

force and the individual fluid-force components (figure 5.11). As a result, the 

motion of the particle when compressed between the counterfaces is basically 

governed by the solid frictional forces. 

(3) The particle sticks to the counterface with the higher friction coefficient 

immediately after its entrapment in the contact (figure 5.12). This sticking is due 
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to the much higher solid-frictional forces on the particle as compared with the 

fluid forces, as was explained in (2) previously. 

(4) The lateral expansion (extrusion) and shearing of the particle during its plastic 

compression in a rolling-sliding lubricated contact results in frictional heating of 

the counterfaces, the particle and the lubricant. The heating can be very high (see 

table 5.6) for relatively large and moderately hard particles (but still much softer 

than the counterfaces), and the flash temperatures encountered in the contact can 

reach hundreds of degrees C. The maximum flash temperature is reached in times 

of the order of 1 ms for typical applications, depending on the rolling and sliding 

speeds of the contact. For bigger and/or harder (ductile) particles, the maximum 

flash temperature can easily exceed the melting point of the materials of the 

counterfaces and/or the particle. Figures 5.13-5.20 demonstrate the development 

of high flash temperatures in a contact, caused by the entrapment of a spherical 

20 µm particle, which is eight times softer than the counterfaces. 

(5) The distributions of the flash temperatures on the counterfaces follow the 

variation of the average solid pressure on the particle (figure 5.21), which is 

affected by the elastohydrodynamic pressure in the contact. The average solid 

pressure on the particle exhibits a maximum at the entrance to the Hertzian zone 

of the contact (figure 5.21), and this affects significantly the level and location of 

the maximum flash temperature, as can be realized by comparing figure 5.21 

with figures 5.16 and 5.18. 

(6) The partition of the frictional heat between the particle and the counterfaces is 

ruled by the thermal properties of the bodies in question, but the greatest amount 

of heat goes to the surface which is stationary to the particle, for obvious reasons. 

This is obvious in table 5.6, where the last column gives an idea of the 

temperature difference between the hotter and the cooler surface. It is seen that, 

generally, the bigger and/or harder the particle, the smaller is (as a percentage) 

the temperature difference between the two surfaces. However, the biggest 

impact on the level of the flash temperature is the size of the particle. From table 

5.6, the absolute difference of the maximum flash temperatures for a 5 µm and 

for a 20 µm particle is quite substantial. 

(7) The particle is expected to have an average temperature distribution closer to that 

of the counterface to which it is stationary, which turns out to be the hotter. 
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(8) Due to its plastic compression, the particle is a heat generator itself. The heat is 

generated in its interior due to internal shearing, but this is relatively small 

compared with the frictional heat produced at the interfaces of the particle with 

the counterfaces. For the example studied in section 5.4, this internal heat 

accounts for only around 1 % of the maximum flash temperatures. It can 

therefore be disregarded. 

(9) The heat convected by the particle and the counterfaces to the lubricant is 

negligible and can be omitted without any consequence in the results. The reason 

for this is the extremely small heat-convection coefficient for the typical 

elastohydrodynamic-lubrication case analyzed in this study. Consequently, the 

counterfaces are essentially transferring all of the frictional heat by conduction. 

(10) For typical thermal properties of materials studied (engineering steels), the 

frictional heat transferred to the counterfaces is dissipated in a short range inside 

the counterfaces and is very weak at a depth equal to the Hertzian contact semi-

width below the surfaces (see figure 3.3 and table 3.3). Therefore, the thermally 

affected areas are those that are immediately below the surfaces, at a depth of a 

few microns. 

(11) Because of the frictional heating in the contact, thermal stresses develop in 

those areas that are mostly heated. The thermal stresses are quite high as 

compared with the mechanical stresses in the contact (arising from the 

compression of the particle) and, in some areas of the counterfaces, account for 

the highest part of the overall loading (see table 5.5 and figures 5.22-5.33). 

Following this, the risk of surface damage is significantly increased. Thermal 

stresses also displace the high-risk zone for plastic deformations much closer to 

(or on) the surface. The omission of thermal-stress calculations would 

significantly underestimate the true risk of damage in the contact. 

(12) The frictional heating following the particle’s presence in the contact, results 

in the creation of a hot spot in the Hertzian zone, at the time when the particle is 

rejected to the outlet zone (see figures 5.15 and 5.16). The elastic distortion of the 

counterfaces (seen in the example of figures 5.34 and 5.35) has a smooth 

appearance, representative of soft and ductile debris dents. Due to the high 

temperatures in the aforementioned “hot spots”, it is expected that these areas, if 

undergone plastic deformation, would appear as smooth and shiny indentations. 

The shiny or white-color appearance is because of possible tempering reactions 
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due to the high temperatures, as for example martensite-to-austenite 

transformations at 700-800 °C, followed by fast cooling to a much lower 

temperature. 

(13) It appears that soft and ductile particles are more likely to produce high 

frictional heating conditions in a sliding contact as compared with hard particles, 

because the area they occupy when plastically compressed is much bigger than 

the area occupied by same-size hard particles. This is because soft/ductile 

particles are fully flattened in the inlet zone, whereas hard particles resist their 

extrusion and retain their initial shape, embedding the counterfaces that try to 

squash them. Therefore, the soft particles offer a much bigger interface for 

friction with the counterfaces as opposed to hard particles and, thus, cause higher 

thermal stressing. Consequently, and because of the usual prevalence of the 

thermal stresses over the mechanical stresses, it might not be surprising that 

soft/ductile particles are sometimes equivalently destructive (as far as direct 

surface defects are concerned) than hard particles of equal size! 

(14) The creation of hot spots from the frictional heating caused by soft/ductile 

debris could explain some failures and resembles closely the damage 

characterized as “local scuffing”. Although the author is not implying that the 

mechanism of local scuffing is solely wear-particle related, the theoretical 

predictions of this Thesis suggest strongly that debris particles have their own 

unique contribution in thermomechanical failures of contacts in a significant 

proportion of reported cases. 

(15) Because of the high heat zone at the core of the hot spots, it is sometimes 

expected to observe a secondary (micro) cavity inside a surface dent and a 

corresponding bump around the centre of the faces of the soft/ductile deformed 

particle, which was responsible for the damage. 
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CHAPTER 6 
 

SUMMARY OF CONCLUSIONS OF THE THESIS 

 

 

 
The main objective of this Thesis was the theoretical modelling of the behaviour of 

soft/ductile debris particles in rolling-sliding elastohydrodynamic contacts. In pursuit 

of this target, two models were developed. The first model (chapter 1) deals with the 

entrainment of solid particles in elastohydrodynamic point contacts and is aimed to 

predict the behaviour of the particles in the inlet zone and assess the risks of lubricant 

starvation and surface indentation due to the accumulation, agglomeration and 

entrapment of the particles in the contact. The second model (chapters 2-5) deals 

with the entrapment and squashing of solid particles in line elastohydrodynamic 

contacts and is used to study subjects like the thermomechanical loading of both the 

particle and the counterfaces of the contact, and to assess the risk of damage of the 

contact in various forms (indentation, abrasion, thermal failure, etc.). 

 Detailed discussions and explanations are scattered throughout chapters 1-5 

and main conclusions are analyzed in the relevant sections at the end of each of 

chapters 1, 2, 3 and 5. Analytical and experimental verification of the predictions of 

this Thesis are drawn from the literature and referenced wherever necessary, and 

wherever it is possible, in all previous chapters. The present chapter serves as a brief 

summary of the main conclusions only, quoted without repeating the lengthy 

discussions and literature references found in other chapters of the Thesis. Therefore, 

this chapter is only a quick guide of main results. 

 The important conclusions are briefly as follows. 

1. Depending on the operational conditions, debris particles tend to, sometimes, 

accumulate in the inlet zone of lubricated contacts (verified for point contacts in 

chapter 1), and, by blocking the inlet and preventing the replenishment of the 

contact with lubricant, can cause lubricant starvation, film collapse and even 

scuffing. Particle accumulation is usually promoted by high sliding conditions in 
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the contact (high slide/roll ratios). Specific combinations of particle size – oil 

bath thickness that would give higher risk of particle accumulation and lubricant 

starvation are shown in figure 1.53.  

• More information: chapter 1 (section 1.3, 1.4, figure 1.53). 

 

2. Similarly to conclusion 1 previously, some operational conditions in lubricated 

point contacts promote the entrapment of debris particles, with a consequent risk 

of surface indentation and abrasion. This is more evident for large particles (like 

20 µm ones) in elastohydrodynamic contacts, but other combinations of particle 

size – oil bath thickness are also of risk, as can be seen in figure 1.53. 

• More information: chapter 1 (section 1.3, 1.4, figure 1.53). 

 

3. Very large particles (as for example larger than 100 µm), which are much bigger 

than the film thickness in lubricated contacts, are more difficult to become 

entrapped, especially in contacts that involve sliding. Therefore, very large 

particles can be harmless. 

• More information: chapter 1 (section 1.3, 1.4), chapter 2 (sub-section 2.3.3). 

 

4. In a line elastohydrodynamic contact, the forces applied by the lubricant on a 

particle are much weaker than the forces due to friction between the particle and 

the counterfaces. Therefore, and in view of its infinitesimal inertia, the motion of 

the particle is ruled by the solid frictional forces. 

• More information: chapter 2 (section 2.5, 2.6, 2.8, 2.9, figure 2.10, table 2.5), 

chapter 5 (figure 5.11). 

 

5. In a line elastohydrodynamic contact, a soft/ductile particle becomes flattened in 

the inlet zone as it gets squashed between the counterfaces, and becomes a 

platelet with a thickness at the order of the central film thickness of the contact. 

The platelet might be circular (rolling contacts) or slightly elliptical (sliding 

contacts). 

• More information: chapter 2 (sections 2.4, 2.9). 
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6. In a line elastohydrodynamic contact, a soft/ductile particle, if entrapped, usually 

sticks to the counterface with the higher friction coefficient (provided the two 

counterfaces are of almost equal hardness) immediately after being pinched. For 

counterfaces with unequal hardness, the particle sticks to the softer surface. The 

sticking involves only the inlet and central zones of the contact. “Sticking” of the 

particle to a counterface when entering the outlet zone and sticking to the faster 

surface (reported in the literature) are given separate special explanation. 

• More information: chapter 2 (sections 2.7-2.9, figure 2.11), chapter 5 (section 

5.4, figure 5.12). 

 

7. In concentrated lubricated contacts, debris particles generate heat due to friction 

with the counterfaces in the contact, especially when there is sliding in the 

contact and the particles are relatively large (usually larger than 5-10 µm). The 

heating can be very high (see table 5.6) even for particles that are 10 times softer 

than the counterfaces. Maximum temperature increase in the contact, owing to 

this frictional heating, is achieved rapidly (in the order of 1 ms, depending on the 

sliding/rolling speed of the contact) and the maximum flash temperature can even 

exceed the melting point of the materials involved in the process (particle and 

counterfaces). Temperatures between 1000-2000 °C are not uncommon for larger 

particles (table 5.6). In the case of soft particles, particle size is more important 

than its hardness from the point of view of the maximum flash temperature (table 

5.6). Rolling contacts suffer much less from this kind of frictional heating than 

sliding contacts. 

• More information: chapter 3 (section 3.2, 3.8, 3.9), chapter 5 (section 5.4, 

figures 5.13-5.16, table 5.6). 

 

8. Following conclusion 7, the distribution of flash temperature on the counterfaces 

follows closely the variation of the average solid pressure on the particle (figure 

5.21), which is affected by the elastohydrodynamic pressure. 

• More information: chapter 5 (section 5.4, figure 5.16, 5.18, 5.21). 

 

9. Following conclusion 7, the partition of the frictional heat between the particle 

and the counterfaces is ruled by the thermal properties of the bodies in question, 
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but the greatest amount of heat goes to the surface that is stationary to the 

particle, for obvious reasons (table 5.6). Generally, the bigger and/or harder the 

particle is, the smaller is (as a percentage) the temperature difference between the 

two counterfaces. 

• More information: chapter 5 (section 5.4, table 5.6, figures 5.13-5.20). 

 

10. Following conclusion 7, the amount of heat generated inside the particle due to 

its plastic compression is much smaller compared with the amount of frictional 

heat generated at the interfaces of the particle with the counterfaces (at the order 

of 1 % for the example of section 5.4). Moreover, the heat lost due to convection 

from the hot particle and the counterfaces to the lubricant is infinitesimal (under 

typical elastohydrodynamic conditions). Therefore, almost all of the frictional 

heat is transferred to the counterfaces by conduction. 

• More information: chapter 3 (sections 3.3-3.5), chapter 5 (section 5.4). 

 

11. Following conclusion 7, the frictional heat transferred to the counterfaces is 

dissipated in a short range and is barely detectable at a depth equal to the 

Hertzian contact semi-width of the contact below the counterfaces. Consequently, 

the thermally affected areas are those immediately below the surfaces, at a depth 

of a few microns. 

• More information: chapter 3 (figure 3.3, table 3.3), chapter 5 (section 5.4). 

 

12. Following conclusion 7, the frictional heating in the contact results in thermal 

stresses. These stresses are often quite high in comparison with the mechanical 

stresses in the contact and, in some areas, account for the highest proportion of 

the overall stress. Thermal stresses increase significantly the risk of surface 

damage and bring the high-risk zone for plastic deformation closer to the surface. 

• More information: chapter 5 (section 5.4, figure 5.22-5.33, table 5.5). 

 

13. Following conclusion 7, the frictional heating from the particle results in the 

creation of a hot spot on the counterfaces. Due to the (often) high temperatures 

developed in the aforementioned hot spots, it is expected that these areas, if 

having undergone plastic deformation, would eventually appear as “shiny” 
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indentations. The shiny or white-color appearance is because of possible 

tempering reactions due to the high temperatures, as for example martensite-to-

austenite transformations at 700-800 °C, followed by fast cooling to a much 

lower temperature. The indentations are expected to have a smooth appearance 

due to the softness of the particles, as the surface elastic displacements suggest 

(figures 5.34, 5.35). 

• More information: chapter 5 (section 5.4, figure 5.15, 5.16, 5.34, 5.35). 

 

14. Following conclusion 7, soft and ductile particles are more likely to result in high 

frictional heating conditions in a sliding contact as compared with hard particles 

because the area they occupy when plastically compressed is much bigger than 

the area occupied by same-size hard particles. This is because soft/ductile 

particles are fully flattened in the inlet zone, whereas hard particles resist their 

extrusion and retain their initial shape, embedding the counterfaces that try to 

squash them. Therefore, the soft particles offer a much bigger interface for 

friction with the counterfaces as opposed to hard particles and, thus, cause higher 

thermal stressing. Consequently, and because of the usual prevalence of the 

thermal stresses over the mechanical stresses, it may not be surprising that 

soft/ductile particles are sometimes equivalently destructive (as far as direct 

surface defects are concerned) as hard particles of equal size! 

• More information: chapter 2 (section 2.4), chapter 5 (section 5.4). 

 

15. Following conclusions 7 and 13, the creation of hot spots from debris particles in 

concentrated contacts could explain some failures and can be characterized as 

local scuffing.  

• More information: chapter 5 (section 5.4, figure 5.15, 5.16). 

 

16. Following conclusions 7 and 13, it is sometimes expected to observe a secondary 

(micro) cavity inside a (past) hot spot (present surface dent) and a corresponding 

bump around the centre of the faces of the (now flattened) soft particle 

responsible for that damage. The cavity is due to softening of the material, 

following a high local heating. 

• More information: chapter 5 (section 5.4, figure 5.15, 5.16, 5.35, 5.36). 



 318

REFERENCES 

 
 

Ai, X., Cheng, H. S., and Zheng, L., 1993, “A Transient Model for Micro-

Elastohydrodynamic Lubrication with Three-Dimensional Irregularities”, 

Transactions of the ASME, Journal of Tribology, vol. 115, pages 102-110. 

 

Ai, X., and Haiqing, Y., 1988, “A Full Numerical Solution for General Transient 

Elastohydrodynamic Line Contacts and its Application”, Wear, vol. 121, pages 143-

159. 

 

Anaya-Dufresne, M., and Sinclair, G. B., 1995, “Some Exact Solutions of 

Reynolds Equation”, Transactions of the ASME, Journal of Tribology, vol. 117, 

pages 560-562. 

 

Aramaki, H., Cheng, H. S., and Zhu, D., 1992, “Film Thickness, Friction, and 

Scuffing Failure of Rib/Roller End Contacts in Cylindrical Roller Bearings”, 

Transactions of the ASME, Journal of Tribology, vol. 114, pages 311-316. 

 

Archard, J. F., 1958, “The Temperature of Rubbing Surfaces”, Wear, vol. 2, pages 

438-455. 

 

Archard, J. F., 1973, “Elastohydrodynamic Lubrication of Real Surfaces”, 

Tribology, (February 1973), pages 8-14. 

 

Bailey, D. M., and Sayles, R. S., 1991, “Effect of Roughness and Sliding Friction on 

Contact Stresses”, Transactions of the ASME, Journal of Tribology, vol. 113, pages 

729-738. 

 

Barber, J. R., 1967, “The Influence of Thermal Expansion on the Friction and Wear 

Process”, Wear, vol. 10, pages 155-159. 



 References  319

Barber, J. R., 1970, “The Conduction of Heat from Sliding Solids”, International 

Journal of Heat and Mass Transfer, vol. 13, pages 857-868. 

 

Barber, J. R., 1972, “Distortion of the Semi-Infinite Solid due to Transient Surface 

Heating”, International Journal of Mechanical Sciences, vol. 14, pages 377-393. 

 

Barber, J. R., 1980a, “The Transient Thermoelastic Contact of a Sphere Sliding on a 

Plane”, Wear, vol. 59, pages 21-29. 

 

Barber, J. R., 1980b, “Some Implications of Dundur’s Theorem for Thermoelastic 

Contact and Crack Problems”, Proceedings of the IMechE, Journal of Mechanical 

Engineering Science, vol. 22, No. 5, pages 229-232. 

 

Barber, J. R., and Martin-Moran, C. J., 1982, “Green’s Functions for Transient 

Thermoelastic Contact Problems for the Half-Plane”, Wear, vol. 79, pages 11-19. 

 

Barwell, F. T., 1984, “The Role of Particle Analysis - a Review of Ferrography”, 

Developments in Numerical and Experimental Methods Applied to Tribology, 

Proceedings of the 10th Leeds-Lyon Symposium on Tribology (6-9 September 1983), 

Butterworths, pages 3-10. 

 

Bell, J.C., and Willemse, P. J., 1998, “Mid-life Scuffing Failure in Automotive 

Cam-Follower Contacts”, Proceedings of the IMechE, Part J: Journal of Engineering 

Tribology, vol. 212, pages 259-269. 

 

Benedict, G. H., and Kelley, B. W., 1961, “Instantaneous Coefficients of Gear 

Tooth Friction”, ASLE Transactions, vol. 4, pages 59-70. 

 

Berry, G. A., and Barber, J. R., 1984, “The Division of Frictional Heat – a Guide to 

the Nature of Sliding Contact”, Transactions of the ASME, Journal of Tribology, vol. 

106, pages 405-415. 

 



 References  320

Bissett, E. J., and Glander, D. W., 1988, “A Highly Accurate Approach that 

Resolves the Pressure Spike of Elastohydrodynamic Lubrication”, Transactions of 

the ASME, Journal of Tribology, vol. 110, pages 241-246. 

 

Blok, H., 1937a, “Theoretical Study of Temperature Rise at Surfaces of Actual 

Contact under Oiliness Lubricating Conditions”, Proceedings of the IMechE, General 

Discussion on Lubrication (Group IV: Properties and Testing), vol. 2, pages 222-235. 

 

Blok, H., 1937b, “Measurement of Temperature Flashes on Gear Teeth under 

Extreme Pressure Conditions”, Proceedings of the IMechE, General Discussion on 

Lubrication (Group III: Industrial Applications), vol. 2, pages 14-20. 

 

Boley, B. A., and Weiner, J. H., 1960, Theory of Thermal Stresses, Wiley. 

 

Bos, J., and Moes, H., 1994, “Frictional Heating of Tribological Contacts”, 

Transactions of the ASME, Journal of Tribology, paper No. 94-Trib-29. 

 

Bowden, F. P., and Tabor, D., 1986 (reprint), The Friction and Lubrication of 

Solids, Clarendon Press, Oxford. 

 

Bretherton, F. P., 1962, “The Motion of Rigid Particles in a Shear Flow at Low 

Reynolds Number”, Journal of Fluid Mechanics, vol. 14, pages 284-304. 

 

Brunn, P., 1976a, “The Slow Motion of a Sphere in a Second-order Fluid”, 

Rheologica Acta, vol. 15, No. 3/4, pages 163-171. 

 

Brunn, P., 1976b, “The Behavior of a Sphere in Non-homogeneous Flows of a 

Viscoelastic Fluid”, Rheologica Acta, vol. 15, No. 11/12, pages 589-611. 

 

Brunn, P., 1977, “Interaction of Spheres in a Viscoelastic Fluid”, Rheologica Acta, 

vol. 16, No. 5, pages 461-475. 

 

Burton, R. A., 1980, “Thermal Deformation in Frictionally Heated Contact”, Wear, 

vol. 59, pages 1-20. 



 References  321

Cameron, A., 1966, The Principles of Lubrication, Longmans, London. 

 

Cameron, A., 1986, “On a Generalized Theory of Scuffing”, Mechanisms and 

Surface Distress, Proceedings of the 12th Leeds-Lyon Symposium on Tribology (3-6 

September 1985), Butterworths, pages 3-9. 

 

Cameron, A., Gordon, A. N., and Symm, G. T., 1964, “Contact Temperatures in 

Rolling/Sliding Surfaces”, Proceedings of the Royal Society, A286, pages 45-61. 

 

Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, second 

edition, reprint 1993, Clarendon Press, Oxford, England. 

 

Chandrasekaran, S., Khemchandani, M. V., and Sharma, J. P., 1985, “Effect of 

Abrasive Contaminants on Scuffing”, Tribology International, vol. 18, No. 4, pages 

219-222. 

 

Chao, K. K., Saba, C. S., and Centers, P. W., 1996, “Effects of Lubricant Borne 

Solid Debris in Rolling Surface Contacts”, STLE Tribology Transactions, vol. 39, 

No. 1, pages 13-22. 

 

Chapman, A. J., 1987, Fundamentals of Heat Transfer, Macmillan. 

 

Chu, W. H., and Abramson, H. N., 1960, “Transient Heat Conduction in a Rod of 

Finite Length, With Variable Thermal Properties”, Transactions of the ASME, 

Journal of Applied Mechanics, pages 617-622. 

 

Cole, S. J., and Sayles, R. S., 1991, “A Numerical Model for the Contact of Layered 

Elastic Bodies with Real Rough Surfaces”, Transactions of the ASME, paper No. 91-

Trib-11. 

 

Cook, N. H., and Bhushan, B., 1973, “Sliding Surface Interface Temperatures”, 

Transactions of the ASME, Journal of Lubrication Technology, pages 59-64. 

 



 References  322

Cusano, C., and Sliney, H. E., 1982, “Dynamics of Solid Dispersions in Oil During 

the Lubrication of Point Contacts, Part I – Graphite”, ASLE Transactions, vol. 25, 

No. 2, pages 183-189. 

 

Dai, F., and Khonsari, M. M., 1993, “A Continuum Theory of a Lubrication 

Problem With Solid Particles”, Transactions of the ASME, Journal of Applied 

Mechanics, vol. 60, pages 48-58. 

 

Dawson, P. H., and Coyle, M. B., 1969, “Metal Transfer During Rolling With 

Sliding – A Challenge”, Wear, vol. 14, pages 385-386. 

 

DesRuisseaux, N. R., and Zerkle, R. D., 1970, “Temperature in Semi-infinite and 

Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling”, 

Transactions of the ASME, Journal of Heat Transfer, pages 456-464. 

 

Dow, T. A., and Burton, R. A., 1972, “Thermoelastic Instability of Sliding Contact 

in the Absence of Wear”, Wear, vol. 19, pages 315-328. 

 

Dow, T. A., and Burton, R. A., 1973, “The Role of Wear in the Initiation of 

Thermoelastic Instabilities of Rubbing Contact”, Transactions of the ASME, Journal 

of Lubrication Technology, pages 71-75. 

 

Dowson, D., and Higginson, G. R., 1966, Elasto-hydrodynamic Lubrication, The 

Fundamentals of Roller and Gear Lubrication, Pergamon Press, Oxford. 

 

Drew, D. A., 1978, “The Force on a Small Sphere in Slow Viscous Flow”, Journal of 

Fluid Mechanics, vol. 88, part 2, pages 393-400. 

 

Dundurs, J., 1974, “Distortion of a Body Caused by Free Thermal Expansion”, 

Mechanics Research Communication, vol. 1, No. 3, pages 121-124. 

 

Dwyer-Joyce, R. S., 1993, “The Effects of Lubricant Contamination on Rolling 

Bearing Performance”, Ph.D. Thesis, Imperial College of Science, Technology and 



 References  323

Medicine, Mechanical Engineering Department, Tribology Section, London, 

England. 

 

Dwyer-Joyce, R. S., Hamer, J. C., and Ioannides, E., 1992, “Lubricant Screening 

for Debris Effects to Improve Fatigue and Wear Life”, Proceedings of the 18th Leeds-

Lyon Symposium on Tribology (3-6 September 1991), Tribology Series 21, Elsevier, 

pages 57-63. 

 

Dwyer-Joyce, R. S., and Heymer, J., 1996, “The Entrainment of Solid Particles into 

Rolling Elastohydrodynamic Contacts”, Proceedings of the 22nd Leeds-Lyon 

Symposium on Tribology, September 1995, Tribology Series 31, Elsevier, pages 

135-140. 

 

Dwyer-Joyce, R. S., Sayles, R. S., and Ioannides, E., 1994, “An Investigation into 

the Mechanisms of Closed Three-body Abrasive Wear”, Wear, vol. 175, pages 133-

142. 

 

Earles, S. W. E., and Powell, D. G., 1967, “Surface Temperature and its Relation to 

Periodic Changes in Sliding Conditions between Unlubricated Steel Surfaces”, 

ASLE paper No. 67-LC-3. 

 

Enthoven, J. C., and Spikes, H. A., 1995, “Visual Observation of the Process of 

Scuffing”, Proceedings of the 21st Leeds-Lyon Symposium on Tribology (6-9 

September 1994), Tribology Series 30, Elsevier, pages 487-494. 

 

Evans, H. P., and Snidle, R. W., 1981, “Inverse Solution of Reynolds’ Equation of 

Lubrication under Point-contact Elastohydrodynamic Conditions”, Transactions of 

the ASME, Journal of Lubrication Technology, vol. 103, pages 539-546. 

 

Glander, D. W., and Bissett, E. J., 1988, “On the Stability and Uniqueness of 

Elastohydrodynamic Lubrication Solutions”, Transactions of the ASME, Journal of 

Tribology, vol. 110, pages 628-631. 

 



 References  324

Godet, M., 1984, “The Third-body Approach: a Mechanical View of Wear”, Wear, 

vol. 100, pages 437-452. 

 

Goodier, J. N., 1937, “On the Integration of the Thermo-Elastic Equations”, 

Philosophical Magazine, Series 7, vol. 23, pages 1017-1032. 

 

Greenstein, T., 1980, “Interaction and Wall Corrections for the Slow Motion of Two 

Fluid or Solid Particles Parallel to the Axis of a Circular Cylinder Through a Viscous 

Fluid”, Journal of Mechanical and Engineering Science, (IMechE), vol. 22, No. 5, 

pages 243-249. 

 

Greenwood, J. A., 1991, “An Interpolation Formula for Flash Temperatures”, Wear, 

vol. 150, pages 153-158. 

 

Greenwood, J. A., 1996, “Flash Temperatures for Bodies Moving at Equal High 

Speeds in Opposite Directions”, Transactions of the ASME, Journal of Tribology, 

vol. 118, pages 255-257. 

 

Greenwood, J. A., and Kauzlarich, J. J., 1973, “Inlet Shear Heating in 

Elastohydrodynamic Lubrication”, Transactions of the ASME, Journal of 

Lubrication Technology, pages 417-426. 

 

Griffioen, J. A., Bair, S., and Winer, W. O., 1986, “Infrared Surface Temperature 

Measurements in a Sliding Ceramic-Ceramic Contact”, Mechanisms and Surface 

Distress, Proceedings of the 12th Leeds-Lyon Symposium on Tribology (3-6 

September 1985), Butterworths, pages 238-245. 

 

Hamer, J. C., and Hutchinson, J., 1992, “Denting of Rolling Element Bearings by 

Third Body Particles”, Report No. 33/92, Issue Number 2, PCS – The Technology 

Transfer Centre, Imperial College of Science, Technology and Medicine, London, 

England. 

 

Hamer, J. C., Lubrecht, A. A., Ioannides, E., and Sayles, R. S., 1989a, “Surface 

Damage on Rolling Elements and its Subsequent Effects on Performance and Life”, 



 References  325

Proceedings of the 15th Leeds-Lyon Symposium on Tribology (6-9 September 1988), 

Tribology Series 14, Elsevier, pages 189-197. 

 

Hamer, J. C., Sayles, R. S., and Ioannides, E., 1987, “Deformation Mechanisms 

and Stresses Created by 3rd Body Debris Contacts and their Effects on Rolling 

Bearing Fatigue”, Proceedings of the 14th Leeds-Lyon Symposium on Tribology (8-

11 September 1987), Tribology series 12, Elsevier, pages 201-208. 

 

Hamer, J. C., Sayles, R. S., and Ioannides, E., 1989b, “Particle Deformation and 

Counterface Damage When Relatively Soft Particles are Squashed Between Hard 

Anvils”, STLE Tribology Transactions, vol. 32, No. 3, pages 281-288. 

 

Hamilton, R. W., Sayles, R. S., and Ioannides, E., 1998, “Wear Due to Debris 

Particles in Rolling Bearing Contacts”, Proceedings of the 24th Leeds-Lyon 

Symposium on Tribology (4-6 September 1997), Tribology Series 34, Elsevier, 

pages 87-93. 

 

Hamrock, B. J., 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill. 

 

Hamrock, B. J., Pan, P., and Lee, R.-T., 1988, “Pressure Spikes in 

Elastohydrodynamically Lubricated Conjunctions”, Transactions of the ASME, 

Journal of Tribology, vol. 110, pages 279-284. 

 

Heckmann, S. R., and Burton, R. A., 1980, “Surface Displacements for High Speed 

Rubs”, Wear, vol. 59, pages 61-77. 

 

Hooke, C. J., 1986, “The Elasto-hydrodynamic Lubrication of Soft, Highly 

Deformed Contacts under Conditions of Nonuniform Motion”, Transactions of the 

ASME, Journal of Tribology, vol. 108, pages 545-550. 

 

Horng, J. H., Lin, J. F., and Li, K. Y., 1996, “Scuffing as Evaluated from the 

Viewpoint of Surface Roughness and Friction Energy”, Transactions of the ASME, 

Journal of Tribology, vol. 118, pages 669-675. 

 



 References  326

Houpert, L. G., and Hamrock, B. J., 1986, “Fast Approach for Calculating Film 

Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High 

Loads”, Transactions of the ASME, Journal of Tribology, vol. 108, pages 411-420. 

 

Hua, D. Y., and Khonsari, M. M., 1996, “Elastohydrodynamic Lubrication by 

Powder Slurries”, Transactions of the ASME, Journal of Tribology, vol. 118, pages 

67-73. 

 

Ioannides, E., and Harris, T. A., 1985, “A New Fatigue Life Model for Rolling 

Bearings”, Transactions of the ASME, Journal of Tribology, vol. 107, pages 367-

377. 

 

Jacobson, B., Ioannides, E., and Tripp, J. H., 1987, “Redistribution of Solidified 

Films in Rough Hertzian Contacts. Part I: Theory”, Proceedings of the 14th Leeds-

Lyon Symposium on Tribology (8-11 September 1987), Tribology series 12, 

Elsevier, pages 51-57. 

 

Jaeger, J. C., 1942, “Moving Sources of Heat and the Temperature at Sliding 

Contacts”, Proceedings of the Royal Society of New South Wales, vol. 76, pages 

203-224. 

 

Jeffery, G. B., 1922, “The Motion of Ellipsoidal Particles Immersed in a Viscous 

Fluid”, Proceedings of the Royal Society of London, Series A, vol. 102, pages 161-

179. 

 

Johnson, K. L., 1985, Contact Mechanics, (reprint 1994), Cambridge University 

Press. 

 

Johnson, R.R., Dow, T. A., and Zhang, Y. Y., 1988, “Thermoelastic Instability in 

Elliptic Contact Between Two Sliding Surfaces”, Transactions of the ASME, Journal 

of Tribology, vol. 110, pages 80-86. 

 



 References  327

Ju, F. D., and Huang, J. H., 1982, “Heat Checking in the Contact Zone of a Bearing 

Seal (a Two-dimensional Model of a Single Moving Asperity)”, Wear, vol. 79, pages 

107-118. 

 

Katayama, K., Saito, A., and Kobayashi, N., 1974, “Transient Heat Conduction in 

Anisotropic Solids”, Proceedings of the 5th International Conference on Heat 

Transfer, Tokyo, Japan, pages 137-141. 

 

Kennedy, F. E. Jr., 1984, “Thermal and Thermomechanical Effects in Dry Sliding”, 

Wear, vol. 100, pages 453-476. 

 

Kennedy, F. E. Jr., and Ling, F. F., 1974, “A Thermal, Thermoelastic, and Wear 

Simulation of a High-Energy Sliding Contact Problem”, Transactions of the ASME, 

Journal of Lubrication Technology, pages 497-507. 

 

Khan, A. S., and Huang, S., 1995, Continuum Theory of Plasticity, Wiley. 

 

Khonsari, M. M., and Hua, D. Y., 1993, “Generalized Non-Newtonian 

Elastohydrodynamic Lubrication”, Tribology International, vol. 26, No. 6, pages 

405-411. 

 

Khonsari, M. M., Pascovici, M. D., and Kucinschi, B. V., 1999, “On the Scuffing 

Failure of Hydrodynamic Bearings in the Presence of an Abrasive Contaminant”, 

Transactions of the ASME, Journal of Tribology, vol. 121, pages 90-96. 

 

Khonsari, M. M., and Wang, S. H., 1990, “On the Role of Particulate 

Contamination in Scuffing Failure”, Wear, vol. 137, pages 51-62. 

 

Kjer, T., 1981, “Particles in New Motor Oils”, Wear, vol. 69, pages 395-396. 

 

Ko, C. N., and Ioannides, E., 1989, “Debris Denting – The Associated Residual 

Stresses and Their Effect on the Fatigue Life of Rolling Bearing: An FEM Analysis”, 

Tribological Design of Machine Elements, Elsevier, Amsterdam, The Netherlands, 

pages 199-207. 



 References  328

Korovchinski, M. V., 1965, “Plane-Contact Problem of Thermoelasticity During 

Quasi-Stationary Heat Generation on the Contact Surfaces”, Transactions of the 

ASME, Journal of Basic Engineering, pages 811-817. 

 

Kulkarni, S. M., Rubin, C. A., and Hahn, G. T., 1991, “Elasto-Plastic Coupled 

Temperature-Displacement Finite Element Analysis of Two-Dimensional Rolling-

Sliding Contact with a Translating Heat Source”, Transactions of the ASME, Journal 

of Tribology, vol. 113, pages 93-101. 

 

Kumar, A., Schmid, S. R., and Wilson, W. R. D., 1997, “Particle Behavior in Two-

Phased Lubrication”, Wear, vol. 206, pages 130-135. 

 

Lai, W. T., and Cheng, H. S., 1985, “Temperature Analysis in Lubricated Simple 

Sliding Rough Contacts”, ASLE Transactions, vol. 28, No. 3, pages 303-312. 

 

Landau, H. G., and Zwicky, E. E. Jr., 1960, “Transient and Residual Thermal 

Stresses in an Elastic-Plastic Cylinder”, Transactions of the ASME, Journal of 

Applied Mechanics, pages 481-488. 

 

Languirand, M. T., and Tichy, J. A., 1983, “The Effect of a Translating High 

Aspect Ratio Particle in a Plane Slider Bearing”, Transactions of the ASME, Journal 

of Lubrication Technology, vol. 105, pages 396-405. 

 

Larsen-Badse, J., 1968a, “Influence of Grit Size on the Groove Formation During 

Sliding Abrasion”, Wear, vol. 11, pages 213-222. 

 

Larsen-Badse, J., 1968b, “Influence of Grit Diameter and Specimen Size on Wear 

During Sliding Abrasion”, Wear, vol. 12, pages 35-53. 

 

Leal, L. G., 1979, “The Motion of Small Particles in Non-Newtonian Fluids”, 

Journal of Non-Newtonian Fluid Mechanics, vol. 5, pages 33-78. 

 

Leal, L. G., 1980, “Particle Motions in a Viscous Fluid”, Annual Review on Fluid 

Mechanics, vol. 12, pages 435-476. 



 References  329

Lee, K., and Barber, J. R., 1993, “Frictionally Excited Thermoelastic Instability in 

Automotive Disk Brakes”, Transactions of the ASME, Journal of Tribology, vol. 

115, pages 607-614. 

 

Lee, R.-T., and Hamrock, B. J., 1990, “A Circular Non-Newtonian Fluid Model: 

Part I – Used in Elastohydrodynamic Lubrication”, Transactions of the ASME, 

Journal of Tribology, vol. 112, pages 486-496. 

 

Lee, S. C., and Cheng, H. S., 1991, “Scuffing Theory Modeling and Experimental 

Correlations”, Transactions of the ASME, Journal of Tribology, vol. 113, pages 327-

334. 

 

Leng, J. A., and Davies, J. E., 1988, “Ferrographic Examination of Unused 

Lubricants for Diesel Engines”, Wear, vol. 122, pages 115-119. 

 

Lessen, M., 1956, “Thermoelasticity and Thermal Shock”, Journal of the Mechanics 

and Physics of Solids, vol. 5, pages 57-61. 

 

Lin, J. F., and Chu, H. Y., 1991, “A Numerical Solution for Calculating Elastic 

Deformation in Elliptical-Contact EHL of Rough Surface”, Transactions of the 

ASME, Journal of Tribology, vol. 113, pages 12-21. 

 

Lin, J. F., and Horng, J. H., 1992, “Analyses of Thermal Hydrodynamic 

Lubrication in High-Speed Rolling. Part II: the Effect of Non-Newtonian Viscosity 

Models”, Tribology International, vol. 25, No. 5, pages 341-349. 

 

Lin, T.-R., and Lin, J.-F., 1991, “Thermal Effects in Elastohydrodynamic 

Lubrication of Line Contacts Using a Non-Newtonian Lubricant”, Tribology 

International, vol. 24, No. 6, pages 365-372. 

 

Ling, F. F., 1969, “On Temperature Transients at Sliding Interface”, Transactions of 

the ASME, Journal of Lubrication Technology, pages 397-405. 

 



 References  330

Ling, F. F., and Rice, J. S., 1966, “Surface Temperature with Temperature-

Dependent Thermal Properties”, ASLE Transactions, vol. 9, page 195-201. 

 

Lo, S. W., 1994, “Die-Workpiece Interfacial Behaviors in Axisymmetric Forging 

Processes with Flat Dies”, STLE Transactions, paper No. 94-TC-6C-1. 

 

Love, A. E. H., 1944 (reprint), A Treatise on the Mathematical Theory of Elasticity, 

4th edition, Dover Publications, New York. 

 

Lowen, E. G., and Shaw, M. C., 1954, “On the Analysis of Cutting Tool 

Temperatures”, Transactions of the ASME, vol. 76, page 217-251. 

 

Lu, C.-J., and Bogy, D. B., 1992, “The Influence of Thermal Deformation on the 

Contact Temperature of Sliding Asperities”, Transactions of the ASME, Journal of 

Applied Mechanics, vol. 59, pages S102-S106. 

 

Lubrecht, A. A, Dwyer-Joyce, R. S., and Ioannides, E., 1992, “Analysis of the 

influence of Indentations on Contact Life”, Proceedings of the 18th Leeds-Lyon 

Symposium on Tribology (3-6 September 1991), Tribology Series 21, Elsevier, 

pages 173-181. 

 

Lubrecht, A. A., ten Napel, W. E., and Bosma, R., 1986, “Multigrid, an Alternative 

Method for Calculating Film Thickness and Pressure Profiles in 

Elastohydrodynamically Lubricated Line Contacts”, Transactions of the ASME, 

Journal of Tribology, vol. 108, pages 551-556. 

 

Maksimov, I. L., 1988, “Thermal Instability of Sliding and Oscillations due to 

Frictional Heating Effect”, Transactions of the ASME, Journal of Tribology, vol. 

110, pages 69-72. 

 

Marscher, W. D., 1982a, “A Critical Evaluation of the Flash-Temperature 

Concept”, ASLE Transactions, vol. 25, No. 2, pages 157-174. 

 



 References  331

Marscher, W. D., 1982b, “Thermal Versus Mechanical Effects in High Speed 

Sliding”, Wear, vol. 79, pages 129-143. 

 

Martin, K. F., 1978, “A Review of Friction Predictions in Gear Teeth”, Wear, vol. 

49, pages 201-238. 

 

McLean, D., 1962, Mechanical Properties of Metals, Wiley. 

 

Mercier, R. J., Malkin, S., and Mollendorf, J. C., 1978, “Thermal Stresses from a 

Moving Band Source of Heat on the Surface of a Semi-Infinite Solid”, Transactions 

of the ASME, Journal of Engineering for Industry, vol. 100, pages 43-48. 

 

Mokhtar, M. O. A., Abdel-Ghany, A. A., 1985, “Elastohydrodynamic Behavior of 

Rolling Elliptical Contacts: Part I: Pressure and Temperatures Distributions”, 

Transactions of the ASME, Journal of Tribology, vol. 107, pages 343-351. 

 

Mokhtar, M. O. A., Abdel-Ghany, A. A., 1985, “Elastohydrodynamic Behavior of 

Rolling Elliptical Contacts: Part II: Oil Film Thickness and Contact Profile”, 

Transactions of the ASME, Journal of Tribology, vol. 107, pages 352-358. 

 

Montmitonnet, P., 1991, “Lubrication of Forging under Thick Film Conditions with 

Thermal Effects”, Lubrication Science, vol. 3, No. 4, pages 223-231. 

 

Moore, A. J, 1997, “The Behaviour of Lubricants in Elastohydrodynamic Contacts”, 

Proceedings of the IMechE, Part J: Journal of Engineering Tribology, vol. 211, pages 

91-106. 

 

Mostofi, A., and Gohar, R., 1983, “Elastohydrodynamic Lubrication of Finite Line 

Contacts”, Transactions of the ASME, Journal of Lubrication Technology, vol. 105, 

pages 598-604. 

 

Motosh, N., and Saman, W. Y., 1986, “A Method for Estimating the Effect of 

Normal Approach on Film Thickness in Elastohydrodynamic Line Contacts”, 



 References  332

Proceedings of the 13th Leeds-Lyon Symposium on Tribology (8-12 September 

1986), Tribology Series 11, Elsevier, pages 285-290. 

 

Munson, B. R., Young, D. F., and Okiishi, T. H., 1990, Fundamentals of Fluid 

Mechanics, Wiley. 

 

Myllerup, C. M., 1993, “Perturbation Approach to Fluid Film Lubrication Theory”, 

Ph.D. Thesis, The Technical University of Denmark, Department of Machine 

Design, Denmark. 

 

Nadano, H., and Terauchi, Y., 1987, “The Mechanism of Seizure in Two-Roller 

Tests”, JSME International Journal, vol. 30, No. 265, pages 1152-1158. 

 

Nelias, D., Sainsot, P., and Flamand, L., 1992, “Deformation of a Particular 

Metallic Contaminant and Role on Surface Damage in High Speed Ball Bearings”, 

Proceedings of the 18th Leeds-Lyon Symposium on Tribology (3-6 September 1991), 

Tribology Series 21, Elsevier, pages 145-151. 

 

Nicolson, D. M., 1996, “Scuffing at High Temperature and Speed”, Ph.D. Thesis, 

Imperial College of Science Technology and Medicine, Mechanical Engineering 

Department, Tribology Section, London, England. 

 

Nivatvongs, K., Cheng, H. S., Ovaert, T. C., and Wilson, W. R. D., 1991, 

“Influence of Surface Topography on Low-Speed Asperity Lubrication Breakdown 

and Scuffing”, Wear, vol. 143, pages 137-148. 

 

Nowacki, W., 1986, Thermoelasticity, second edition, Pergamon Press. 

 

Odi-Owei, S., and Roylance, B. J., 1986, “The Effect of Solid Contamination on the 

Wear and Critical Failure Load in a Sliding Lubricated Contact”, Wear, vol. 107, 

pages 239-255. 

 



 References  333

Oktay, S. T., and Suh, N. P., 1992, “Wear Debris Agglomeration in Dry and 

Boundary Lubrication Sliding”, Proceedings of the 18th Leeds-Lyon Symposium on 

Tribology (3-6 September 1991), Tribology Series 21, Elsevier, pages 347-356. 

 

Olver, A. V., 1991, “Testing Transmission Lubricants: the Importance of Thermal 

Response”, Proceedings of the IMechE, Part G: Journal of Aerospace Engineering, 

vol. 205, pages 35-44. 

 

Osborn, K. F., and Sadeghi, F., 1992, “Time Dependent Line EHD Lubrication 

Using the Multigrid/Multilevel Technique”, Transactions of the ASME, Journal of 

Tribology, vol. 114, pages 68-74. 

 

Özisik, M. N., 1993, Heat Conduction, 2nd edition, Wiley. 

 

Pan, P., and Hamrock, B. J., 1989, “Simple Formulae for Performance Parameters 

Used in Elastohydrodynamically Lubricated Line Contacts”, Transactions of the 

ASME, Journal of Tribology, vol. 111, pages 246-251. 

 

Pearsall, G. W., and Backofen, W. A., 1963, “Frictional Boundary Conditions in 

Plastic Compression”, Transactions of the ASME, Journal of Engineering for 

Industry, pages 68-76. 

 

Peterson, M. B., Florek, J. J., and Lee, R. E., 1960, “Sliding Characteristics of 

Metals at High Temperatures”, ASLE Transactions, vol. 3, pages 101-109. 

 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, 

Numerical Recipes in FORTRAN, second edition, Cambridge University Press. 

 

Protasov, B. V., and Kragelskii, I. V., 1982, “On Heat Generation in External 

Friction”, Soviet Journal of Friction and Wear, vol. 2, pages 1-6. 

 

Quinn, T. F. J., 1978, “The Division of Heat and Surface Temperatures at Sliding 

Steel Interfaces and Their Relation to Oxidational Wear”, ASLE Transactions, vol. 

21, No. 1, pages 78-86. 



 References  334

Quinn, T. F. J., and Winer, W. O., 1985, “The Thermal Aspects of Oxidational 

Wear”, Wear, vol. 102, pages 67-80. 

 

Rabinowicz, E., and Mutis, A., 1965, “Effect of Abrasive Particle Size on Wear”, 

Wear, vol. 8, pages 381-390. 

 

Rhatigan, J. L., Johnson, R. R., and Dow, T. A., 1989, “An Experimental Study of 

Thermoelastic Effects in Scuffing Failure of Sliding Lubricated Contacts”, 

Transactions of the ASME, Journal of Tribology, vol. 111, pages 23-28. 

 

Richardson, R. C. D., 1968, “The Wear of Metals by Relatively Soft Abrasives”, 

Wear, vol. 11, No. 4, pages 245-275. 

 

Rigney, D. A., and Hirth, J. P., 1979, “Plastic Deformation and Sliding Friction of 

Metals”, Wear, vol. 53, pages 345-370. 

 

Roelands, C. J. A., Vlugter, J. C., and Waterman, H. I., 1963, “The Viscosity-

Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With 

Chemical Constitution”, Transactions of the ASME, Journal of Basic Engineering, 

vol. 85, pages 601-607. 

 

Roelands, C. J. A., 1966, “Correlation Aspects of the Viscosity-Temperature-

Pressure Relationship of Lubricating Oils”, Ph.D. Thesis, Technische Hogeschool, 

Delft, The Netherlands. 

 

Rohde, S. M., Whicker, D., and Booker, J. F., 1979, “Elastohydrodynamic Squeeze 

Films: Effects of Viscoelasticity and Fluctuating Load”, Transactions of the ASME, 

Journal of Lubrication Technology, vol. 101, pages 74-80. 

 

Rohde, S. M., Whicker, D., and Browne, A. L., 1976, “Dynamic Analysis of 

Elastohydrodynamic Squeeze Films”, Transactions of the ASME, Journal of 

Lubrication Technology, pages 401-408. 

 



 References  335

Ronen, A., Malkin, S., and Loewy, K., 1980, “Wear of Dynamically Loaded 

Hydrodynamic Bearings by Contaminant Particles”, Transactions of the ASME, 

Journal of Lubrication Technology, vol. 102, pages 452-458. 

 

Roylance, B. J., Siu, S. W., and Vaughan, D. A., 1986, “Thermally-Related Stress 

Behaviour in Concentrated Contacts and the Implications for Scuffing Failure”, 

Mechanisms and Surface Distress, Proceedings of the 12th Leeds-Lyon Symposium 

on Tribology (3-6 September 1985), Butterworths, pages 117-127. 

 

Rozeanu, L., and Pnueli, D., 1980, “Hardness Controlled Thermal Failures”, 

Transactions of the ASME, Journal of Lubrication Technology, vol. 102, pages 545-

551. 

 

Rubinow, S. I., and Keller, J. B., 1961, “The Transverse Force on a Spinning 

Sphere Moving in a Viscous Fluid”, Journal of Fluid Mechanics, vol. 11, pages 447-

459. 

 

Russell, J. A., Campbell, W. E., Burton, R. A., and Ku, P. M., 1965, “Boundary 

Lubrication Behavior of Organic Films at Low Temperatures”, ASLE Transactions, 

vol. 8, pages 48-58. 

 

Ryhming, I. L., 1979, “On Temperature and Heat Source Distributions in Sliding 

Contact Problems”, Acta Mechanica, vol. 32, pages 261-274. 

 

Sadeghi, F., and Sui, P. C., 1990, “Thermal Elastohydrodynamic Lubrication of 

Rough Surfaces”, Transactions of the ASME, Journal of Tribology, vol. 112, pages 

341-346. 

 

Saffman, P. G., 1965, “The Lift on a Small Sphere in a Slow Shear Flow”, Journal 

of Fluid Mechanics, vol. 22, part 2, pages 385-400. 

 

Saville, D. A., 1977, “Electrokinetic Effects With Small Particles”, Annual Review 

on Fluid Mechanics, vol. 9, pages 321-337. 

 



 References  336

Sayles, R. S., 1995, “Debris and Roughness in Machine Element Contacts: Some 

Current and Future Engineering Implications”, Ninth BP-IMechE Tribology Lecture, 

Proceedings of the IMechE, Part J: Journal of Engineering Tribology, vol. 209, pages 

149-172. 

 

Sayles, R. S., 1996, “Basic Principles of Rough Surface Contact Analysis Using 

Numerical Methods”, Tribology International, vol. 29, No. 8, pages 639-650. 

 

Sayles, R. S., Hamer, J. C., and Ioannides, E., 1990, “The Effects of Particulate 

Contamination in Rolling Bearings – a State of The Art Review”, Proceedings of the 

IMechE, Part G: Journal of Aerospace Engineering, vol. 204, pages 29-36. 

 

Sayles, R. S., and Ioannides, E., 1988, “Debris Damage in Rolling Bearings and its 

Effects on Fatigue Life”, Transactions of the ASME, Journal of Tribology, vol. 110, 

pages 26-31. 

 

Shieh, J., and Hamrock, B. J., 1991, “Film Collapse in EHL and Micro-EHL”, 

Transactions of the ASME, Journal of Tribology, vol. 113, pages 372-377. 

 

Shukor, A., 1994, “Debris Entrainment in Rolling Element Bearings”, Third-Year-

Project Report (supervisor: Dr R.S. Sayles), Imperial College of Science, 

Technology and Medicine, Mechanical Engineering Department, Tribology Section, 

London, England. 

 

Stachowiak, G. W., Kirk, T. B., and Stachowiak, G. B., 1991, “Ferrography and 

Fractal Analysis of Contamination Particles in Unused Lubricating Oils”, Tribology 

International, vol. 24, No. 6, pages 329-333. 

 

Storm, M. L, 1951, “Heat Conduction in Simple Metals”, Journal of Applied 

Physics, vol. 22, No. 7, pages 940-951. 

 

Sugihara-Seki, M., 1993, “The Motion of an Elliptical Cylinder in Channel Flow at 

Low Reynolds Numbers”, Journal of Fluid Mechanics, vol. 257, pages 575-596. 

 



 References  337

Sui, P. C., and Sadeghi, F., 1991, “Thermoelastic Effects in Lubricated 

Rolling/Sliding Line Contacts”, Transactions of the ASME, Journal of Tribology, 

vol. 113, pages 174-181. 

 

Tallian, T. E., 1992, Failure Atlas for Hertz Contact Machine Elements, ASME 

Press, New York. 

 

Tian, X., and Kennedy, F. E. Jr., 1993, “Contact Surface Temperature Models for 

Finite Bodies in Dry and Boundary Lubricated Sliding”, Transactions of the ASME, 

Journal of Tribology, vol. 115, pages 411-418. 

 

Tieu, A. K., and Worden, J., 1987, “Transient Oil Film Thickness in Gear Contacts 

under Dynamic Loads”, Proceedings of the 13th Leeds-Lyon Symposium on 

Tribology (8-12 September 1986), Tribology Series 11, Elsevier, pages 285-290. 

 

Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, third edition, 

McGraw-Hill. 

 

Ting, B.-Y., Winer, W. O., 1989, “Friction-Induced Thermal Influences in Elastic 

Contact Between Spherical Asperities”, Transactions of the ASME, Journal of 

Tribology, vol. 111, pages 315-322. 

 

Tseng, M.-L., and Burton, R., 1982, “Thermal Stress in a Two-Dimensional (Plane 

Stress) Half-Space for a Moving Heat Input”, Wear, vol. 79, pages 1-9. 

 

Uetz, H., and Föhl, J., 1978, “Wear as an Energy Transformation Process”, Wear, 

vol. 49, pages 253-264. 

 

Venner, C. H., 1991, “Multilevel Solution of the EHL Line and Point Contact 

Problems”, Ph.D. Thesis, University of Twente, The Netherlands. 

 

Venner, C. H., and Lubrecht, A. A., 1994, “Transient Analysis of Surface Features 

in an EHL Line Contact in the Case of Sliding”, Transactions of the ASME, Journal 

of Tribology, vol. 116, pages 186-193. 



 References  338

Venner, C. H., ten Napel, W. E., and Bosma, R., 1990, “Advanced Multilevel 

Solution of the EHL Line Contact Problem”, Transactions of the ASME, Journal of 

Tribology, vol. 112, pages 426-432. 

 

Vichard, J. P., 1971, “Transient Effects in the Lubrication of Hertzian Contacts”, 

Journal of Mechanical Engineering Science, vol. 13, No. 3, pages 173-189. 

 

Ville, F., and Nelias, D., 1997, “An Experimental Study on the Concentration and 

Shape of Dents Caused by Spherical Metallic Particles in EHL Contacts”, presented 

at the 52nd STLE Annual Meeting, 18-22 May 1997, Kansas City, USA. 

 

Ville, F., and Nelias, D., 1998, “Influence of the Nature and Size of Solid Particles 

on the Indentation Features in EHL Contacts”, Proceedings of the 24th Leeds-Lyon 

Symposium on Tribology (4-6 September 1997), Tribology Series 34, Elsevier, 

pages 399-409. 

 

Wan, G. T. Y., and Spikes, H. A., 1986, “Two Phase Lubricants in 

Elastohydrodynamic Contacts - Graphite in Oil Dispersions”, Mechanisms and 

Surface Distress, Proceedings of the 12th Leeds-Lyon Symposium on Tribology (3-6 

September 1985), Butterworths, pages 249-257. 

 

Wan, G. T. Y., and Spikes, H. A., 1988, “The Behavior of Suspended Solid 

Particles in Rolling and Sliding Elastohydrodynamic Contacts”, STLE Transactions, 

vol. 31, No. 1, pages 12-21. 

 

Wang, Q., and Cheng, H. S., 1994, “A Mixed Lubrication Model for Journal 

Bearings with a Thin Soft Coating – Part II: Flash Temperature Analysis and its 

Application to Tin Coated Al-Si Bearings”, STLE paper No. 94-TC-4B-2. 

 

Wang, S., Cusano, C., and Conry, T. F., 1991, “Thermal Analysis of 

Elastohydrodynamic Lubrication of Line Contacts Using the Ree-Eyring Fluid 

Model”, Transactions of the ASME, Journal of Tribology, vol. 113, pages 232-244. 

 



 References  339

Wang, S., and Komvopoulos, K., 1994, “A Fractal Theory of the Temperature 

Distribution at Elastic Contacts of Fast Sliding Surfaces”, Transactions of the ASME, 

Journal of Tribology, paper No. 94-Trib-16. 

 

Webster, M. N., Ioannides, E., and Sayles, R. S., 1986, “The Effect of 

Topographical Defects on the Contact Stress and Fatigue Life in Rolling Element 

Bearings”, Mechanisms and Surface Distress, Proceedings of the 12th Leeds-Lyon 

Symposium on Tribology (3-6 September 1985), Butterworths, pages 207-221. 

 

West, M. A., and Sayles, R. S., 1987, “A 3-Dimensional Method of Studying 3-

Body Contact Geometry and Stress on Real Rough Surfaces”, Proceedings of the 14th 

Leeds-Lyon Symposium on Tribology (8-11 September 1987), Tribology series 12, 

Elsevier, pages 195-200. 

 

Williams, J. A., and Hyncica, A. M., 1992, “Abrasive Wear in Lubricated 

Contacts”, Journal of Physics, Part D: Applied Physics, vol. 25, pages A81-A90. 

 

Wilson, E. A., 1969, “Compression of a Thin Plastic Mass Between Two Elastic 

Cylinders”, Transactions of the ASME, Journal of Lubrication Technology, pages 

342-350. 

 

Wilson, W. R. D., and Wong, C. J., 1974, “Analysis of the Lubricant Film 

Formation Process in Plane Strain Forging”, Transactions of the ASME, Journal of 

Lubrication Technology, pages 605-616. 

 

Wolf, R., 1991, “The Influence of Surface Roughness Texture on the Temperature 

and Scuffing in Sliding Contact”, Wear, vol. 143, pages 99-118. 

 

Wong, P. L., Wang, R., and Lingard, S., 1996, “Pressure and Temperature 

Dependence of the Density of Liquid Lubricants”, Wear, vol. 201, pages 58-63. 

 

Wu, Y.-W., and Yan, S.-M., 1987, “A Full Numerical Solution for the Non-Steady 

State Elastohydrodynamic Problem in Nominal Line Contacts”, Proceedings of the 



 References  340

13th Leeds-Lyon Symposium on Tribology (8-12 September 1986), Tribology Series 

11, Elsevier, pages 285-290. 

 

Xu, G., Sadeghi, F., and Hoeprich, M., 1997, “Residual Stresses Due to Debris 

Effects in EHL Contacts”, STLE Tribology Transactions, vol. 40, No. 4, pages 613-

620. 

 

Xuan, J. L., Hong, I. T., and Fitch, E. C., 1989, “Hardness Effect on Three-Body 

Abrasive Wear under Fluid Film Lubrication”, Transactions of the ASME, Journal of 

Tribology, vol. 111, pages 35-40. 

 

Yang, C. C., 1971, “Incipient Plastic Yielding of an Elastoplastic Half-Space under 

an Arbitrarily Distributed Moving Heat Source”, International Journal of 

Engineering Science, vol. 9, pages 507-519. 

 

Yang, P., and Wen, S., 1990a, “A Forward Iterative Numerical Method for Steady-

State Elastohydrodynamically Lubricated Contacts”, Tribology International, vol. 23, 

No. 1, pages 17-22. 

 

Yang, P., and Wen, S., 1990b, “A Generalized Reynolds Equation for Non-

Newtonian Thermal Elastohydrodynamic Lubrication”, Transactions of the ASME, 

Journal of Tribology, vol. 112, pages 631-636. 

 

Yang, P., and Wen, S., 1992, “The Behavior of Non-Newtonian Thermal EHL Film 

in Line Contacts at Dynamic Loads”, Transactions of the ASME, Journal of 

Tribology, vol. 114, pages 81-85. 

 

Yang, P., and Wen, S., 1993, “A Fast, Robust, Straightforward Algorithm for 

Thermal Elastohydrodynamic Lubrication”, Tribology International, vol. 26, No. 1, 

pages 17-23. 

 

Young-Ze, L., and Ludema, K. C., 1990, “The Shared-Load Wear Model in 

Lubricated Sliding: Scuffing Criteria and Wear Coefficients”, Wear, vol. 138, pages 

13-22. 



 References  341

Zantopoulos, H., 1998, “Some Observations on Scuffing in Tapered Roller 

Bearings”, Transactions of the ASME, Journal of Tribology, vol. 120, pages 427-

435. 

 

Zhu, D., and Cheng, H. S., 1988, “Effect of Surface Roughness on the Point Contact 

EHL”, Transactions of the ASME, Journal of tribology, vol. 110, pages 32-37. 



 342

RELEVANT PUBLICATIONS OF THE AUTHOR 
 

 

 
At the time of writing this Thesis (March 1999), there were four publications based 

on this research. Other papers based on this Thesis are under preparation. The four 

relevant publications are as follows. 

 

• Nikas, G. K., Sayles, R. S., and Ioannides, E., 1997, “Effects of Debris Particles 

in Sliding/Rolling EHD Contacts”, Proceedings of the 1st World Tribology 

Congress (8-12 September 1997, London, England), IMechE, page 271. 

 

• Nikas, G. K., Sayles, R. S., and Ioannides, E., 1998, “Effects of Debris Particles 

in Sliding/Rolling Elastohydrodynamic Contacts”, Proceedings of the IMechE, 

Journal of Engineering Tribology, vol. 212, No. J5, pages 333-343. 

 

• Nikas, G. K., Ioannides, E., and Sayles, R. S., 1999, “Thermal Modeling and 

Effects From Debris Particles in Sliding/Rolling EHD Line Contacts – A Possible 

Local Scuffing Mode”, Transactions of the ASME, Journal of Tribology, vol. 

121, No. 2 (April), pages 272-281. 

 

• Nikas, G. K., Sayles, R. S., and Ioannides, E., 1999, “Thermoelastic Distortion 

of EHD Line Contacts During the Passage of Soft Debris Particles”, Transactions 

of the ASME, Journal of Tribology, vol. 121, No. 2 (April), pages 265-271. 


